W | cttuce

Lettuce Reference Guide

Mark Paluch

5.2.1.RELEASE

Table of Contents

. Overview
1.1. Knowing Redis
1.2. Project Reactor

1.3. Non-blocking API for Redis

1.4. Requirements
1.5. Additional Help Resources
1.5.1. Support

1.5.2. Following Development

1.5.3. Project Metadata
1.6. Where to go from here
. New & Noteworthy
2.1. What’s new in Lettuce 5.2
2.2. What’s new in Lettuce 5.1
2.3. What’s new in Lettuce 5.0
. Getting Started
3.1. 1. Get it
3.1.1. For Maven users:
3.1.2. For Ivy users:
3.1.3. For Gradle users:
3.1.4. Plain Java
3.2. 2. Start coding
. Connecting Redis
4.1. URI syntax
4.2. Basic Usage
4.2.1. RedisURI
4.2.2. Exceptions
4.2.3. Examples
4.3. Asynchronous API
4.3.1. Motivation

4.3.2. Creating futures using lettuce

4.3.3. Consuming futures
4.3.4. Synchronizing futures
4.3.5. Error handling
4.3.6. Examples

4.4. Reactive API
4.4.1. Motivation

4.4.2. Understanding Reactive Streams
4.4.3. Understanding Publishers

© 00 0 g U1l U1 Ul gl Ul Ul Ul R R R RN NN NN R R R R,

DN NN RN R R R R e e
W W NN R O g U Ul =B = o O

4.4.4. A word on the lettuce Reactive API
4.4.5. Consuming Publisher<T>

4.4.6. From push to pull

4.4.7. Creating Flux and Mono using lettuce
4.4.8. Hot and Cold Publishers

4.4.9. Transforming publishers

4.4.10. Absent values

4.4.11. Filtering items

4.4.12. Error handling

4.4.13. Schedulers and threads

4.4.14. Redis Transactions

4.5. Publish/Subscribe

4.5.1. Subscribing
4,5.2. Reactive API
4.5.3. Redis Cluster

4.6. Transactions/Multi

4.6.1. Transactions using the asynchronous API
4.6.2. Transactions using the reactive API
4.6.3. Transactions on clustered connections

4.6.4. Examples

5. High-Availability and Sharding
5.1. Master/Replica

5.1.1. Redis Sentinel

5.1.2. Standalone Master/Replica

5.1.3. Static Master/Replica with predefined node addresses
5.1.4. Topology discovery

5.1.5. Topology Updates

5.2. Redis Sentinel

5.2.1. Direct connection Redis Sentinel nodes
5.2.2. Redis discovery using Redis Sentinel

5.2.3. Examples

5.3. Redis Cluster

5.3.1. Command routing

5.3.2. Cross-slot command execution and cluster-wide execution for selected commands

5.3.3. Execution of commands on one or multiple cluster nodes

5.3.4. Refreshing the cluster topology view

5.3.5. Connection Count for a Redis Cluster Connection Object

5.3.6. Client-options

5.4. ReadFrom Settings

5.4.1. Redis Cluster

5.4.2. Master/Replica connections

24
24
27
28
29
29
30
31
32
33
36
37
37
38
38
40
40
41
41
41
43
43
43
43
43
43
44
45
46
46
46
47
47
48
49
49
50
50
53
53
54

5.4.3. Use Cases for non-master reads

5.4.4. Read from settings

6. Working with dynamic Redis Command Interfaces

6.1. Introduction
6.2. Command methods
6.3. Defining command methods
6.3.1. Command naming
6.3.2. CamelCase in method names
6.3.3. @Command annotation
6.3.4. Parameters
6.3.5. Codecs
6.3.6. Response types
6.4. Execution models
6.4.1. Synchronous (Blocking) Execution
6.4.2. Asynchronous (Future) Execution
6.4.3. Reactive Execution
6.4.4. Batch Execution

7. Advanced usage

7.1. Configuring Client resources
7.1.1. Creating Client resources
7.1.2. Using and reusing ClientResources
7.1.3. Configuration settings
7.1.4. Advanced settings
7.2. Client Options
7.2.1. Cluster-specific options
7.2.2. Request queue size and cluster
7.3. SSL Connections
7.3.1. Limitations
7.3.2. Connection Procedure and Reconnect
7.3.3. Certificate Chains/Root Certificate/Self-Signed Certificates
7.3.4. Host/Peer Verification
7.3.5. StartTLS
7.4. Native Transports
7.4.1. Limitations
7.5. Unix Domain Sockets
7.6. Streaming API
7.6.1. Examples
7.7. Events
7.7.1. Before 3.4/4.1
7.7.2. Since 3.4/4.1

7.8. Pipelining and command flushing

56
56
57
57
58
39
39
60
60
61
63
63
64
64
65
65
66
68
68
68
68
69
70
72
74
77
77
78
78
78
79
79
80
81
81
82
82
83
83
84
86

7.8.1. Command flushing
7.9. Connection Pooling
7.9.1. Is connection pooling necessary?
7.9.2. Execution Models
7.9.3. Synchronous Connection Pooling
7.9.4. Asynchronous Connection Pooling
7.10. Custom commands
7.10.1. Mechanics of Lettuce commands
7.10.2. Synchronous, asynchronous and reactive
7.11. Command execution reliability
7.11.1. General
7.11.2. What does at-most-once mean?
7.11.3. Why No Guaranteed Delivery?
7.11.4. Message Ordering
7.11.5. Failures and at-least-once execution
7.11.6. Switching between at-least-once and at-most-once operations
7.11.7. Clustered operations
8. Integration and Extension
8.1. Codecs
8.1.1. Why ByteBuffer instead of byte[]
8.1.2. Diversity in Codecs
8.1.3. Multi-Threading
8.1.4. Compression
8.1.5. Examples
8.2. CDI Support
8.2.1. RedisURI producer
8.2.2. Injection
8.2.3. Activating Lettuce’s CDI extension
8.3. Spring Support
8.3.1. Spring Data Redis
8.3.2. Redis Client
8.3.3. Redis Cluster Client

87
88
89
89
89
90
92
93
95
97
98
98
98
99
99
101
101
102
102
102
103
103
103
103
105
106
106
107
107
108
108
109

Chapter 1. Overview

This document is the reference guide for Lettuce. It explains how to use Lettuce, its concepts,
semantics, and the syntax.

You can read this reference guide in a linear fashion, or you can skip sections if something does not
interest you.

This section provides some basic introduction to Redis. The rest of the document refers only to
Lettuce features and assumes the user is familiar with Redis concepts.

1.1. Knowing Redis

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of
solutions, terms and patterns (to make things worse even the term itself has multiple meanings).
While some of the principles are common, it is crucial that the user is familiar to some degree with
Redis. The best way to get acquainted to this solutions is to read their documentation and follow
their documentation - it usually doesn’t take more then 5-10 minutes to go through them and if you
are coming from an RDMBS-only background many times these exercises can be an eye opener.

The jumping off ground for learning about Redis is redis.io. Here is a list of other useful resources:

¢ The interactive tutorial introduces Redis.

* The command references explains Redis commands and contains links to getting started guides,
reference documentation and tutorials.

1.2. Project Reactor

Reactor is a highly optimized reactive library for building efficient, non-blocking applications on
the JVM based on the Reactive Streams Specification. Reactor based applications can sustain very
high throughput message rates and operate with a very low memory footprint, making it suitable
for building efficient event-driven applications using the microservices architecture.

Reactor implements two publishers Flux<T> and Mono<T>, both of which support non-blocking
back-pressure. This enables exchange of data between threads with well-defined memory usage,
avoiding unnecessary intermediate buffering or blocking.

1.3. Non-blocking API for Redis

Lettuce is a scalable thread-safe Redis client based on netty and Reactor. Lettuce provides
synchronous, asynchronous and reactive APIs to interact with Redis.

1.4. Requirements

Lettuce 4.x and 5.x binaries require JDK level 8.0 and above.

In terms of Redis, at least 2.6.

http://www.google.com/search?q=nosql+acronym
http://www.redis.io/
http://try.redis.io/
http://redis.io/commands
https://projectreactor.io
https://github.com/reactive-streams/reactive-streams-jvm
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://netty.io
http://redis.io/

1.5. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what
we think is an easy to follow guide for starting with Lettuce. However, if you encounter issues or
you are just looking for an advice, feel free to use one of the links below:

1.5.1. Support
There are a few support options available:

* Lettuce on Stackoverflow Stackoverflow is a tag for all Lettuce users to share information and
help each other. Note that registration is needed only for posting.

* Get in touch with the community on Gitter.

* Google Group: lettuce-redis-client-users or lettuce-redis-client-users@googlegroups.com.

Report bugs (or ask questions) in Github issues https://github.com/lettuce-io/lettuce-core/issues.

1.5.2. Following Development

For information on the Lettuce source code repository, nightly builds and snapshot artifacts please
see the Lettuce homepage. You can help make lettuce best serve the needs of the lettuce community
by interacting with developers through the Community on Stackoverflow. To follow developer
activity look for the mailing list information on the lettuce homepage. If you encounter a bug or
want to suggest an improvement, please create a ticket on the lettuce issue tracker.

1.5.3. Project Metadata

 Version Control - https://github.com/lettuce-io/lettuce-core

* Releases and Binary Packages — https://github.com/lettuce-io/lettuce-core/releases
* Issue tracker - https://github.com/lettuce-io/lettuce-core/issues

* Release repository — https://repol.maven.org/maven2/ (Maven Central)

* Snapshot repository - https://oss.sonatype.org/content/repositories/snapshots/ (OSS Sonatype
Snapshots)

1.6. Where to go from here

* Head to Getting Started if you feel like jumping straight into the code.
* Go to High-Availability and Sharding for Master/Replica, Redis Sentinel and Redis Cluster topics.
 In order to dig deeper into the core features of Reactor:

o If you’re looking for client configuration options, performance related behavior and how to
use various transports, go to Advanced usage.

o See Integration and Extension for extending Lettuce with codecs or integrate it in your
CDI/Spring application.

o You want to know more about at-least-once and at-most-once? Take a look into Command

http://stackoverflow.com/questions/tagged/lettuce
https://gitter.im/lettuce-io/Lobby
https://groups.google.com/d/forum/lettuce-redis-client-users
mailto:lettuce-redis-client-users@googlegroups.com
https://github.com/lettuce-io/lettuce-core/issues
https://lettuce.io
http://stackoverflow.com/questions/tagged/lettuce
https://lettuce.io
https://github.com/lettuce-io/lettuce-core/issues
https://github.com/lettuce-io/lettuce-core
https://github.com/lettuce-io/lettuce-core/releases
https://github.com/lettuce-io/lettuce-core/issues
https://repo1.maven.org/maven2/
https://oss.sonatype.org/content/repositories/snapshots/

execution reliability.

Chapter 2. New & Noteworthy

2.1. What’s new in Lettuce 5.2

» Allow randomization of read candidates using Redis Cluster

» SSL support for Redis Sentinel

2.2. What’s new in Lettuce 5.1

* Add support for ZPOPMIN, ZPOPMAX, BZPOPMIN, BZPOPMAX commands.

Add support for Redis Command Tracing through Brave, see Configuring Client resources.

Add support for Redis Streams.

Asynchronous connect () for Master/Replica connections.

Asynchronous Connection Pooling through AsyncConnectionPoolSupport and AsyncPool.

Dedicated exceptions for Redis LOADING, BUSY, and NOSCRIPT responses.

Commands in at-most-once mode (auto-reconnect disabled) are now canceled already on
disconnect.

Global command timeouts (also for reactive and asynchronous API usage) configurable through
Client Options.

Host and port mappers for Lettuce usage behind connection tunnels/proxies through
SocketAddressResolver, see Configuring Client resources.

SCRIPT LOAD dispatch to all cluster nodes when issued through RedisAdvanced(ClusterCommands.

Reactive ScanStream to iterate over the keyspace using SCAN commands.

Transactions using Master/Replica connections are bound to the master node.

2.3. What’s new in Lettuce 5.0

* New artifact coordinates: io.lettuce:lettuce-core and packages moved from
com. lambdaworks.redis to io.lettuce.core.

» Reactive API now Reactive Streams-based using Project Reactor.

* Redis Command Interfaces supporting dynamic command invocation and Redis Modules.
* Enhanced, immutable Key-Value objects.

* Asynchronous Cluster connect.

» Native transport support for Kqueue on macOS systems.

* Removal of support for Guava.

* Removal of deprecated RedisConnection and RedisAsyncConnection interfaces.

* Java 9 compatibility.

* HTML and PDF reference documentation along with a new project website: https://lettuce.io.

https://redis.io/topics/streams-intro
https://projectreactor.io/
https://lettuce.io

Chapter 3. Getting Started

You can get started with Lettuce in various ways.

3.1. 1. Get it

3.1.1. For Maven users:
Add these lines to file pom.xml:
<dependency>
<groupId>io.lettuce</groupld>
<artifactId>lettuce-core</artifactId>

<version>5.2.1.RELEASE</version>
</dependency>

3.1.2. For Ivy users:
Add these lines to file ivy.xml:
<ivy-module>
<dependencies>
<dependency org="1io.lettuce" name="lettuce-core" rev="5.2.1.RELEASE"/>

</dependencies>
</ivy-module>

3.1.3. For Gradle users:

Add these lines to file build.gradle:

dependencies {
compile 'io.lettuce:lettuce-core:5.2.1.RELEASE'

}

3.1.4. Plain Java

Download the latest binary package from https://github.com/lettuce-io/lettuce-core/releases and
extract the archive.

3.2. 2. Start coding

So easy! No more boring routines, we can start.

Import required classes:

https://github.com/lettuce-io/lettuce-core/releases

import io.lettuce.core.*;

and now, write your code:

RedisClient redisClient = RedisClient.create("redis://password@localhost:6379/0");
StatefulRedisConnection<String, String> connection = redisClient.connect();
RedisCommands<String, String> syncCommands = connection.sync();

syncCommands.set("key", "Hello, Redis!");

connection.close();
redisClient.shutdown();

Done!
Do you want to see working examples?

» Standalone Redis

» Standalone Redis with SSL

* Redis Sentinel

* Redis Cluster

» Connecting to a ElastiCache Master

* Connecting to ElastiCache with Master/Replica
* Connecting to Azure Redis Cluster

* Lettuce with Spring

https://github.com/lettuce-io/lettuce-core/blob/5.2.1.RELEASE/src/test/java/io/lettuce/examples/ConnectToRedis.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.1.RELEASE/src/test/java/io/lettuce/examples/ConnectToRedisSSL.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.1.RELEASE/src/test/java/io/lettuce/examples/ConnectToRedisUsingRedisSentinel.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.1.RELEASE/src/test/java/io/lettuce/examples/ConnectToRedisCluster.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.1.RELEASE/src/test/java/io/lettuce/examples/ConnectToElastiCacheMaster.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.1.RELEASE/src/test/java/io/lettuce/examples/ConnectToMasterSlaveUsingElastiCacheCluster.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.1.RELEASE/src/test/java/io/lettuce/examples/ConnectToRedisClusterSSL.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.1.RELEASE/src/test/java/io/lettuce/examples/SpringExample.java

Chapter 4. Connecting Redis

Connections to a Redis Standalone, Sentinel, or Cluster require a specification of the connection
details. The unified form is RedisURI. You can provide the database, password and timeouts within
the RedisURI. You have following possibilities to create a RedisURI:

1. Use an URI:
RedisURI.create("redis://localhost/");

2. Use the Builder

RedisURI.Builder.redis("localhost", 6379).auth("password").database(1).build();

3. Set directly the values in RedisURI

new RedisURI("localhost", 6379, 60, TimeUnit.SECONDS);

4.1. URI syntax

Redis Standalone

redis :/| [password@] host [: port] [/ databasel[? [timeout=timeout[d|h|m|s|ms]|us|ns]]
[&_database=database_]]

Redis Standalone (SSL)

rediss :| [: password@] host [: port] [/ database]l? [timeout=timeout[d|h|m|s|ms]|us|ns]]
[& database=database]]

Redis Standalone (Unix Domain Sockets)
redis-socket :/[path [?[timeout=timeout[d|h|m|s|ms|us|ns]][&_database=database_]]
Redis Sentinel

redis-sentinel :/| [: password@] hostl1[: portl] [, hostZ[: port2]] [, hostN[: portN]] [/ database][?
[timeout=timeout[d|h|m|s|ms|us|ns]] [&_sentinelMasterId=sentinelMasterId_]
[&_database=database_]]

Schemes

e redis Redis Standalone
e rediss Redis Standalone SSL

e redis-socket Redis Standalone Unix Domain Socket

e redis-sentinel Redis Sentinel
Timeout units

* d Days

* h Hours

* m Minutes

e s Seconds

e ms Milliseconds
* us Microseconds
* ns Nanoseconds

Hint: The database parameter within the query part has higher precedence than the database in the
path.

RedisURI supports Redis Standalone, Redis Sentinel and Redis Cluster with plain, SSL, TLS and unix
domain socket connections.

4.2. Basic Usage

Example 1. Basic usage

RedisClient client = RedisClient.create("redis://localhost"); ©)

StatefulRedisConnection<String, String> connection = client.connect(); @

RedisCommands<String, String> commands = connection.sync(); ®
String value = commands.get("foo"); @
connection.close(); ®
client.shutdown(); ®

@ Create the RedisClient instance and provide a Redis URI pointing to localhost, Port 6379
(default port).

@ Open a Redis Standalone connection. The endpoint is used from the initialized RedisClient

® Obtain the command API for synchronous execution. Lettuce supports asynchronous and
reactive execution models, too.

@ Issue a GET command to get the key foo.

® Close the connection when youre done. This happens usually at the very end of your
application. Connections are designed to be long-lived.

® Shut down the client instance to free threads and resources. This happens usually at the
very end of your application.

Each Redis command is implemented by one or more methods with names identical to the
lowercase Redis command name. Complex commands with multiple modifiers that change the
result type include the CamelCased modifier as part of the command name, e.g. zrangebyscore and
zrangebyscoreWithScores.

Redis connections are designed to be long-lived and thread-safe, and if the connection is lost will
reconnect until close() is called. Pending commands that have not timed out will be (re)sent after
successful reconnection.

All connections inherit a default timeout from their RedisClient and

and will throw a RedisException when non-blocking commands fail to return a result before the
timeout expires. The timeout defaults to 60 seconds and may be changed in the RedisClient or for
each connection. Synchronous methods will throw a RedisCommandExecutionException in case Redis
responds with an error. Asynchronous connections do not throw exceptions when Redis responds
with an error.

4.2.1. RedisURI

The RedisURI contains the host/port and can carry authentication/database details. On a successful

connect you get authenticated, and the database is selected afterward. This applies
also after re-establishing a connection after a connection loss.

A Redis URI can also be created from an URI string. Supported formats are:

* redis://[password@]host[:port][/databaseNumber] Plaintext Redis connection
e rediss://[password@]host[:port][/databaseNumber] SSL Connections Redis connection

* redis-sentinel://[password@]host[:port][,host2[:port2]][/databaseNumber]J#sentinelMasterId
for using Redis Sentinel

* redis-socket:///path/to/socket Unix Domain Sockets connection to Redis

4.2.2. Exceptions

In the case of an exception/error response from Redis, you’ll receive a RedisException containing
the error message. RedisException is a RuntimeException.

4.2.3. Examples

Example 2. Using host and port and set the default timeout to 20 seconds

RedisClient client = RedisClient.create(RedisURI.create("localhost", 6379));
client.setDefaultTimeout(20, TimeUnit.SECONDS);

// 1

client.shutdown();

Example 3. Using RedisURI

RedisURI redisUri = RedisURI.Builder.redis("localhost")
.withPassword("authentication")
.withDatabase(2)
.build();

RedisClient client = RedisClient.create(redisUri);

// T

client.shutdown();

10

Example 4. SSL RedisURI

RedisURI redisUri = RedisURI.Builder.redis("localhost")
.withSs1l(true)
.withPassword("authentication")
.withDatabase(2)
.build();

RedisClient client = RedisClient.create(redisUri);

// 1

client.shutdown();

Example 5. String RedisURI

RedisURI redisUri = RedisURI.create("redis://authentication@localhost/2");
RedisClient client = RedisClient.create(redisUri);

// 1

client.shutdown();

4.3. Asynchronous API

This guide will give you an impression how and when to use the asynchronous API provided by
lettuce 4.x.

4.3.1. Motivation

Asynchronous methodologies allow you to utilize better system resources, instead of wasting
threads waiting for network or disk I/O. Threads can be fully utilized to perform other work
instead. lettuce facilitates asynchronicity from building the client on top of netty that is a
multithreaded, event-driven I/O framework. All communication is handled asynchronously. Once
the foundation is able to processes commands concurrently, it is convenient to take advantage from
the asynchronicity. It is way harder to turn a blocking and synchronous working software into a
concurrently processing system.

Understanding Asynchronicity

Asynchronicity permits other processing to continue before the transmission has finished and the
response of the transmission is processed. This means, in the context of lettuce and especially Redis,
that multiple commands can be issued serially without the need of waiting to finish the preceding
command. This mode of operation is also known as Pipelining. The following example should give
you an impression of the mode of operation:

11

http://netty.io
http://redis.io/topics/pipelining

* Given client A and client B

* Client A triggers command SET A=B

* Client B triggers at the same time of Client A command SET (=D

* Redis receives command from Client A

* Redis receives command from Client B

* Redis processes SET A=B and responds 0K to Client A

* Client A receives the response and stores the response in the response handle
* Redis processes SET (=D and responds 0K to Client B

* Client B receives the response and stores the response in the response handle

Both clients from the example above can be either two threads or connections within an
application or two physically separated clients.

Clients can operate concurrently to each other by either being separate processes, threads, event-
loops, actors, fibers, etc. Redis processes incoming commands serially and operates mostly single-
threaded. This means, commands are processed in the order they are received with some
characteristic that we’ll cover later.

Let’s take the simplified example and enhance it by some program flow details:

e Given client A

* Client A triggers command SET A=B

Client A uses the asynchronous API and can perform other processing
* Redis receives command from Client A
* Redis processes SET A=B and responds 0K to Client A

* Client A receives the response and stores the response in the response handle

Client A can access now the response to its command without waiting (non-blocking)

The Client A takes advantage from not waiting on the result of the command so it can process
computational work or issue another Redis command. The client can work with the command
result as soon as the response is available.

Impact of asynchronicity to the synchronous API

While this guide helps you to understand the asynchronous API it is worthwhile to learn the impact
on the synchronous API. The general approach of the synchronous API is no different than the
asynchronous API. In both cases, the same facilities are used to invoke and transport commands to
the Redis server. The only difference is a blocking behavior of the caller that is using the
synchronous API. Blocking happens on command level and affects only the command completion
part, meaning multiple clients using the synchronous API can invoke commands on the same
connection and at the same time without blocking each other. A call on the synchronous API is
unblocked at the moment a command response was processed.

e Given client A and client B

12

* Client A triggers command SET A=B on the synchronous API and waits for the result

* Client B triggers at the same time of Client A command SET (=D on the synchronous API and
waits for the result

* Redis receives command from Client A

* Redis receives command from Client B

* Redis processes SET A=B and responds 0K to Client A

* Client A receives the response and unblocks the program flow of Client A

* Redis processes SET (=D and responds 0K to Client B

* Client B receives the response and unblocks the program flow of Client B
However, there are some cases you should not share a connection among threads to avoid side-
effects. The cases are:

* Disabling flush-after-command to improve performance

* The use of blocking operations like BLPOP. Blocking operations are queued on Redis until they
can be executed. While one connection is blocked, other connections can issue commands to
Redis. Once a command unblocks the blocking command (that said an LPUSH or RPUSH hits the
list), the blocked connection is unblocked and can proceed after that.

¢ Transactions

* Using multiple databases

Result handles

Every command invocation on the asynchronous API creates a RedisFuture<T> that can be canceled,
awaited and subscribed (listener). A CompleteableFuture<T> or RedisFuture<T> is a pointer to the
result that is initially unknown since the computation of its value is yet incomplete. A
RedisFuture<T> provides operations for synchronization and chaining.

Example 6. First steps with CompletableFuture

CompletableFuture<String> future = new CompletableFuture<>();

n

System.out.println("Current state: " + future.isDone());

future.complete("my value");

System.out.println("Current state: " + future.isDone());
System.out.println("Got value: " + future.get());

The example prints the following lines:

13

Current state: false
Current state: true
Got value: my value

Attaching a listener to a future allows chaining. Promises can be used synonymous to futures, but
not every future is a promise. A promise guarantees a callback/notification and thus it has come to
its name.

A simple listener that gets called once the future completes:

Example 7. Using listeners with CompletableFuture

final CompletableFuture<String> future = new CompletableFuture<>();
future.thenRun(new Runnable() {

public void run() {
try {
System.out.println("Got value: " + future.get());
} catch (Exception e) {
e.printStackTrace();
}

}
b

System.out.println("Current state:
future.complete("my value");
System.out.println("Current state:

+ future.isDone());

+ future.isDone());

The value processing moves from the caller into a listener that is then called by whoever completes
the future. The example prints the following lines:

Current state: false
Got value: my value
Current state: true

The code from above requires exception handling since calls to the get() method can lead to
exceptions. Exceptions raised during the computation of the Future<T> are transported within an
ExecutionException. Another exception that may be thrown is the InterruptedException. This is
because calls to get() are blocking calls and the blocked thread can be interrupted at any time. Just
think about a system shutdown.

The CompletionStage<T> type allows since Java 8 a much more sophisticated handling of futures. A
CompletionStage<T> can consume, transform and build a chain of value processing. The code from
above can be rewritten in Java 8 in the following style:

14

Example 8. Using a Consumer future listener

CompletableFuture<String> future = new CompletableFuture<>();
future.thenAccept(new Consumer<String>() {

public void accept(String value) {
System.out.println("Got value: " + value);
}
1

System.out.println("Current state: " + future.isDone());

future.complete("my value");
System.out.println("Current state:

+ future.isDone());

The example prints the following lines:

Current state: false
Got value: my value
Current state: true

You can find the full reference for the CompletionStage<T> type in the Java 8 API documentation.

4.3.2. Creating futures using lettuce

lettuce futures can be used for initial and chaining operations. When using lettuce futures, you will
notice the non-blocking behavior. This is because all [/O and command processing are handled
asynchronously using the netty EventLoop. The lettuce RedisFuture<T> extends a CompletionStage<T>
so all methods of the base type are available.

lettuce exposes its futures on the Standalone, Sentinel, Publish/Subscribe and Cluster APIs.

Connecting to Redis is insanely simple:

RedisClient client = RedisClient.create("redis://localhost");
RedisAsyncCommands<String, String> commands = client.connect().async();

In the next step, obtaining a value from a key requires the GET operation:

RedisFuture<String> future = commands.get("key");

4.3.3. Consuming futures

The first thing you want to do when working with futures is to consume them. Consuming a futures
means obtaining the value. Here is an example that blocks the calling thread and prints the value:

15

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

Example 9. GET a key

RedisFuture<String> future = commands.get("key");
String value = future.get();
System.out.println(value);

Invocations to the get() method (pull-style) block the calling thread at least until the value is
computed but in the worst case indefinitely. Using timeouts is always a good idea to not exhaust
your threads.

Example 10. Blocking synchronization

try {
RedisFuture<String> future = commands.get("key");
String value = future.get(1, TimeUnit.MINUTES);
System.out.println(value);

} catch (Exception e) {
e.printStackTrace();

}

The example will wait at most 1 minute for the future to complete. If the timeout exceeds, a
TimeoutException is thrown to signal the timeout.

Futures can also be consumed in a push style, meaning when the RedisFuture<T> is completed, a
follow-up action is triggered:

Example 11. Using a Consumer listener with GET

RedisFuture<String> future = commands.get("key");
future.thenAccept(new Consumer<String>() {
public void accept(String value) {
System.out.println(value);

}
b

Alternatively, written in Java 8 lambdas:

16

Example 12. Using a Consumer lambda with GET

RedisFuture<String> future = commands.get("key");

future.thenAccept(System.out::println);

lettuce futures are completed on the netty EventLoop. Consuming and chaining futures on the
default thread is always a good idea except for one case: Blocking/long-running operations. As a
rule of thumb, never block the event loop. If you need to chain futures using blocking calls, use the
thenAcceptAsync()/thenRunAsync() methods to fork the processing to another thread. The Oasync()
methods need a threading infrastructure for execution, by default the ForkJoinPool.commonPool() is
used. The ForkJoinPool is statically constructed and does not grow with increasing load. Using
default Executors is almost always the better idea.

Example 13. Asynchronous listener notification

Executor sharedExecutor = ...
RedisFuture<String> future = commands.get("key");

future.thenAcceptAsync(new Consumer<String>() {

public void accept(String value) {
System.out.println(value);

}

}, sharedExecutor);

4.3.4. Synchronizing futures
A Kkey point when using futures is the synchronization. Futures are usually used to:

1. Trigger multiple invocations without the urge to wait for the predecessors (Batching)
2. Invoking a command without awaiting the result at all (Fire&Forget)

3. Invoking a command and perform other computing in the meantime (Decoupling)

4. Adding concurrency to certain computational efforts (Concurrency)

There are several ways how to wait or get notified in case a future completes. Certain
synchronization techniques apply to some motivations why you want to use futures.

Blocking synchronization

Blocking synchronization comes handy if you perform batching/add concurrency to certain parts of
your system. An example to batching can be setting/retrieving multiple values and awaiting the
results before a certain point within processing.

17

Example 14. Getting multiple keys asynchronously

List<RedisFuture<String>> futures = new ArraylList<RedisFuture<String>>();

for (int i =0; 1 < 10; i++) {
futures.add(commands.set("key-" + i, "value-" + 1));

LettuceFutures.awaitAl1(1, TimeUnit.MINUTES, futures.toArray(new RedisFuture
[futures.size()]));

The code from above does not wait until a certain command completes before it issues another one.
The synchronization is done after all commands are issued. The example code can easily be turned
into a Fire&Forget pattern by omitting the call to LettuceFutures.awaitAl1().

A single future execution can be also awaited, meaning an opt-in to wait for a certain time but
without raising an exception:

Example 15. Using RedisFuture.await to wait for a result

RedisFuture<String> future = commands.get("key");

if(!future.await(1, TimeUnit.MINUTES)) {
System.out.println("Could not complete within the timeout");

Calling await() is friendlier to call since it throws only an InterruptedException in case the blocked
thread is interrupted. You are already familiar with the get() method for synchronization, so we
will not bother you with this one.

At last, there is another way to synchronize futures in a blocking way. The major caveat is that you
will become responsible to handle thread interruptions. If you do not handle that aspect, you will
not be able to shut down your system properly if it is in a running state.

RedisFuture<String> future = commands.get("key");
while (!future.isDone()) {
// do something ...

While the isDone() method does not aim primarily for synchronization use, it might come handy to
perform other computational efforts while the command is executed.

Chaining synchronization

Futures can be synchronized/chained in a non-blocking style to improve thread utilization.

18

Chaining works very well in systems relying on event-driven characteristics. Future chaining builds
up a chain of one or more futures that are executed serially, and every chain member handles a
part in the computation. The CompletionStage<T> API offers various methods to chain and transform
futures. A simple transformation of the value can be done using the thenApply() method:

Example 16. Future chaining

future.thenApply(new Function<String, Integer>() {

public Integer apply(String value) {
return value.length();

}

}).thenAccept(new Consumer<Integer>() {

public void accept(Integer integer) {

System.out.println("Got value: " + integer);

}
D

Alternatively, written in Java 8 lambdas:

Example 17. Future chaining with lambdas

future.thenApply(String::length)
.thenAccept(integer -> System.out.println("Got value:

+ integer));

The thenApply() method accepts a function that transforms the value into another one. The final
thenAccept() method consumes the value for final processing.

You have already seen the thenRun() method from previous examples. The thenRun() method can be
used to handle future completions in case the data is not crucial to your flow:

future.thenRun(new Runnable() {

public void run() {
System.out.println("Finished the future.");

}
1

Keep in mind to execute the Runnable on a custom Executor if you are doing blocking calls within the
Runnable.

Another chaining method worth mentioning is the either-or chaining. A couple of Either()
methods are available on a CompletionStage<T>, see the Java 8 API docs for the full reference. The
either-or pattern consumes the value from the first future that is completed. A good example might

19

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

be two services returning the same data, for instance, a Master-Replica scenario, but you want to
return the data as fast as possible:

Example 18. Read from Master and Replica and continue with the first response

RedisStringAsyncCommands<String, String> master = masterClient.connect().async();
RedisStringAsyncCommands<String, String> replica = replicaClient.connect().async(

)

RedisFuture<String> future = master.get("key");
future.acceptEither(replica.get("key"), new Consumer<String>() {

public void accept(String value) {
System.out.println("Got value: " + value);

}
1

4.3.5. Error handling

Error handling is an indispensable component of every real world application and should to be
considered from the beginning on. Futures provide some mechanisms to deal with errors.

In general, you want to react in the following ways:

* Return a default value instead
* Use a backup future
* Retry the future
RedisFuture<T>s transport exceptions if any occurred. Calls to the get() method throw the occurred

exception wrapped within an ExecutionException (this is different to lettuce 3.x). You can find more
details within the Javadoc on CompletionStage.

The following code falls back to a default value after it runs to an exception by using the handle()
method:

20

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

Example 19. Future listener receiving result and error objects

future.handle(new BiFunction<String, Throwable, String>() {

public Integer apply(String value, Throwable throwable) {
if(throwable != null) {
return "default value";

}

return value;

}
}).thenAccept(new Consumer<String>() {

public void accept(String value) {
System.out.println("Got value:

+ value);

}
1}

More sophisticated code could decide on behalf of the throwable type that value to return, as the
shortcut example using the exceptionally() method:

Example 20. Future recovery with Exception handlers

future.exceptionally(new Function<Throwable, String>() {

public String apply(Throwable throwable) {
if (throwable instanceof IllegalStateException) {
return "default value";

}

return "other default value";
}
b

Retrying futures and recovery using futures is not part of the Java 8 CompleteableFuture<T>. See the
Reactive API for comfortable ways handling with exceptions.

4.3.6. Examples

21

Example 21. Basic operations

RedisAsyncCommands<String, String> async = client.connect().async();
RedisFuture<String> set = async.set("key", "value");
RedisFuture<String> get = async.get("key");

set.get() == "OK"
get.get() == "value"

Example 22. Waiting for a future with a timeout

RedisAsyncCommands<String, String> async = client.connect().async();
RedisFuture<String> set = async.set("key", "value");
RedisFuture<String> get = async.get("key");

set.await(1, SECONDS) == true

set.get() == "OK"
get.get(1, TimeUnit.MINUTES) == "value"

Example 23. Using a listener with RedisFuture
RedisStringAsyncCommands<String, String> async = client.connect().async();
RedisFuture<String> set = async.set("key", "value");
Runnable listener = new Runnable() {
public void run() {

ey

}
+

set.thenRun(listener);

4.4. Reactive API

This guide helps you to understand the Reactive Stream pattern and aims to give you a general
understanding of how to build reactive applications.

4.4.1. Motivation

Asynchronous and reactive methodologies allow you to utilize better system resources, instead of
wasting threads waiting for network or disk I/O. Threads can be fully utilized to perform other
work instead.

22

A broad range of technologies exists to facilitate this style of programming, ranging from the very
limited and less usable java.util.concurrent.Future to complete libraries and runtimes like Akka.
Project Reactor, has a very rich set of operators to compose asynchronous workflows, it has no
further dependencies to other frameworks and supports the very mature Reactive Streams model.

4.4.2. Understanding Reactive Streams

Reactive Streams is an initiative to provide a standard for asynchronous stream processing with
non-blocking back pressure. This encompasses efforts aimed at runtime environments (JVM and
JavaScript) as well as network protocols.

The scope of Reactive Streams is to find a minimal set of interfaces, methods, and protocols that will
describe the necessary operations and entities to achieve the goal—asynchronous streams of data
with non-blocking back pressure.

It is an interoperability standard between multiple reactive composition libraries that allow
interaction without the need of bridging between libraries in application code.

The integration of Reactive Streams is usually accompanied with the use of a composition library
that hides the complexity of bare Publisher<T> and Subscriber<T> types behind an easy-to-use APIL
Lettuce uses Project Reactor that exposes its publishers as Mono and Flux.

For more information about Reactive Streams see http://reactive-streams.org.

4.4.3. Understanding Publishers

Asynchronous processing decouples I/0 or computation from the thread that invoked the operation.
A handle to the result is given back, usually a java.util.concurrent.Future or similar, that returns
either a single object, a collection or an exception. Retrieving a result, that was fetched
asynchronously is usually not the end of processing one flow. Once data is obtained, further
requests can be issued, either always or conditionally. With Java 8 or the Promise pattern, linear
chaining of futures can be set up so that subsequent asynchronous requests are issued. Once
conditional processing is needed, the asynchronous flow has to be interrupted and synchronized.
While this approach is possible, it does not fully utilize the advantage of asynchronous processing.

In contrast to the preceding examples, Publisher<T> objects answer the multiplicity and
asynchronous questions in a different fashion: By inverting the Pull pattern into a Push pattern.

A Publisher is the asynchronous/push “dual” to the synchronous/pull Iterable

event Iterable (pull) Publisher (push)
retrieve data T next() onNext(T)

discover error throws Exception onError(Exception)
complete 'hasNext() onCompleted()

An Publisher<T> supports emission sequences of values or even infinite streams, not just the
emission of single scalar values (as Futures do). You will very much appreciate this fact once you
start to work on streams instead of single values. Project Reactor uses two types in its vocabulary:

23

http://projectreactor.io/
http://projectreactor.io/
http://reactive-streams.org

Mono and Flux that are both publishers.
A Mono can emit @ to 1 events while a Flux can emit @ to N events.

A Publisher<T> is not biased toward some particular source of concurrency or asynchronicity and
how the underlying code is executed - synchronous or asynchronous, running within a ThreadPool.
As a consumer of a Publisher<T>, you leave the actual implementation to the supplier, who can
change it later on without you having to adapt your code.

The last key point of a Publisher<T> is that the underlying processing is not started at the time the
Publisher<T>is obtained, rather its started at the moment an observer subscribes or signals demand
to the Publisher<T>. This is a crucial difference to a java.util.concurrent.Future, which is started
somewhere at the time it is created/obtained. So if no observer ever subscribes to the Publisher<T>,
nothing ever will happen.

4.4.4. A word on the lettuce Reactive API

All commands return a Flux<T>, Mono<T> or Mono<Void> to which a Subscriber can subscribe to. That
subscriber reacts to whatever item or sequence of items the Publisher<T> emits. This pattern
facilitates concurrent operations because it does not need to block while waiting for the
Publisher<T> to emit objects. Instead, it creates a sentry in the form of a Subscriber that stands
ready to react appropriately at whatever future time the Publisher<T> does so.

4.4.5. Consuming Publisher<T>

The first thing you want to do when working with publishers is to consume them. Consuming a
publisher means subscribing to it. Here is an example that subscribes and prints out all the items
emitted:

Flux.just("Ben", "Michael", "Mark").subscribe(new Subscriber<String>() {
public void onSubscribe(Subscription s) {
s.request(3);
}

public void onNext(String s) {
System.out.println("Hello

+s+ "l");

}

public void onError(Throwable t) {

}

public void onComplete() {
System.out.println("Completed");
}
Ik

The example prints the following lines:

24

Hello Ben
Hello Michael
Hello Mark
Completed

You can see that the Subscriber (or Observer) gets notified of every event and also receives the
completed event. A Publisher<T> emits items until either an exception is raised or the Publisher<T>
finishes the emission calling onCompleted. No further elements are emitted after that time.

A call to the subscribe registers a Subscription that allows to cancel and, therefore, do not receive
further events. Publishers can interoperate with the un-subscription and free resources once a
subscriber unsubscribed from the Publisher<T>.

Implementing a Subscriber<T> requires implementing numerous methods, so lets rewrite the code
to a simpler form:

Flux.just("Ben", "Michael", "Mark").doOnNext(new Consumer<String>() {
public void accept(String s) {
System.out.println("Hello

+s+ "1");
}
}).doOnComplete(new Runnable() {
public void run() {
System.out.println("Completed");

}
}).subscribe();

alternatively, even simpler by using Java 8 Lambdas:

Flux.just("Ben", "Michael", "Mark")
.doOnNext(s -> System.out.println("Hello " + s + "!"))
.doOnComplete(() -> System.out.println("Completed"))
.subscribe();

You can control the elements that are processed by your Subscriber using operators. The take()
operator limits the number of emitted items if you are interested in the first N elements only.

Flux.just("Ben", "Michael", "Mark") //
.doOnNext(s -> System.out.println("Hello " + s + "!"))
.doOnComplete(() -> System.out.println("Completed"))
.take(2)

.subscribe();

The example prints the following lines:

25

Hello Ben
Hello Michael
Completed

Note that the take operator implicitly cancels its subscription from the Publisher<T> once the
expected count of elements was emitted.

A subscription to a Publisher<T> can be done either by another Flux or a Subscriber. Unless you are
implementing a custom Publisher, always use Subscriber. The used subscriber Consumer from the
example above does not handle Exceptions so once an Exception is thrown you will see a stack trace
like this:

Exception in thread "main" reactor.core.Exceptions$BubblingException:
java.lang.RuntimeException: Example exception

at reactor.core.Exceptions.bubble(Exceptions.java:96)

at reactor.core.publisher.Operators.onErrorDropped(Operators.java:296)

at reactor.core.publisher.LambdaSubscriber.onError(LambdaSubscriber.java:117)

Caused by: java.lang.RuntimeException: Example exception
at demos.lambda$example3Lambda$4(demos.java:87)
at
reactor.core.publisher.FluxPeekFuseable$PeekFuseableSubscriber.onNext(FluxPeekFuseable
.java:157)
. 23 more

It is always recommended to implement an error handler right from the beginning. At a certain
point, things can and will go wrong.

A fully implemented subscriber declares the onCompleted and onError methods allowing you to react
to these events:

26

Flux.just("Ben", "Michael", "Mark").subscribe(new Subscriber<String>() {
public void onSubscribe(Subscription s) {
s.request(3);

}

public void onNext(String s) {
System.out.println("Hello

n

+ S + ll!ll);

}

public void onError(Throwable t) {
System.out.println("onError: " + e);

}

public void onComplete() {
System.out.println("Completed");
}
K

4.4.6. From push to pull

The examples from above illustrated how publishers can be set up in a not-opinionated style about
blocking or non-blocking execution. A Flux<T> can be converted explicitly into an Iterable<T> or
synchronized with block(). Avoid calling block() in your code as you start expressing the nature of
execution inside your code. Calling block() removes all non-blocking advantages of the reactive
chain to your application.

String last = Flux.just("Ben", "Michael”, "Mark").last().block();
System.out.println(last);

The example prints the following line:
Mark

A blocking call can be used to synchronize the publisher chain and find back a way into the plain
and well-known Pull pattern.

List<String> list = Flux.just("Ben", "Michael", "Mark").collectList().block();
System.out.println(list);

The tolist operator collects all emitted elements and passes the list through the
BlockingPublisher<T>.

The example prints the following line:

27

[Ben, Michael, Mark]

4.4.7. Creating Flux and Mono using lettuce

There are many ways to establish publishers. You have already seen just(), take() and
collectlList(). Refer to the Project Reactor documentation for many more methods that you can use
to create Flux and Mono.

lettuce publishers can be used for initial and chaining operations. When using lettuce publishers,
you will notice the non-blocking behavior. This is because all /O and command processing are
handled asynchronously using the netty EventLoop.

Connecting to Redis is insanely simple:

RedisClient client = RedisClient.create("redis://localhost");
RedisStringReactiveCommands<String, String> commands = client.connect().reactive();

In the next step, obtaining a value from a key requires the GET operation:

commands.get("key").subscribe(new Consumer<String>() {

public void accept(String value) {
System.out.println(value);
}
});

Alternatively, written in Java 8 lambdas:

commands
.get("key")
.subscribe(value -> System.out.println(value));

The execution is handled asynchronously, and the invoking Thread can be used to processed in
processing while the operation is completed on the Netty EventLoop threads. Due to its decoupled
nature, the calling method can be left before the execution of the Publisher<T> is finished.

lettuce publishers can be used within the context of chaining to load multiple keys asynchronously:

Flux.just("Ben", "Michael", "Mark").
flatMap(key -> commands.get(key)).
subscribe(value -> System.out.println("Got value:

+ value));

28

http://projectreactor.io/docs/

4.4.8. Hot and Cold Publishers
There is a distinction between Publishers that was not covered yet:

* A cold Publishers waits for a subscription until it emits values and does this freshly for every
subscriber.

* A hot Publishers begins emitting values upfront and presents them to every subscriber
subsequently.

All Publishers returned from the Redis Standalone, Redis Cluster, and Redis Sentinel API are cold,
meaning that no I/O happens until they are subscribed to. As such a subscriber is guaranteed to see
the whole sequence from the beginning. So just creating a Publisher will not cause any network I/O
thus creating and discarding Publishers is cheap. Publishers created for a Publish/Subscribe emit
PatternMessages and ChannelMessages once they are subscribed to. Publishers guarantee however to
emit all items from the beginning until their end. While this is true for Publish/Subscribe
publishers, the nature of subscribing to a Channel/Pattern allows missed messages due to its
subscription nature and less to the Hot/Cold distinction of publishers.

4.4.9. Transforming publishers

Publishers can transform the emitted values in various ways. One of the most basic
transformations is flatMap() which you have seen from the examples above that converts the
incoming value into a different one. Another one is map(). The difference between map() and
flatMap() is that flatMap() allows you to do those transformations with Publisher<T> calls.

Flux.just("Ben", "Michael", "Mark")
.flatMap(commands: :get)
.flatMap(value -> commands.rpush("result", value))
.subscribe();

The first flatMap() function is used to retrieve a value and the second flatMap() function appends
the value to a Redis list named result. The flatMap() function returns a Publisher whereas the
normal map just returns <T>. You will use flatMap() a lot when dealing with flows like this, you’ll
become good friends.

An aggregation of values can be achieved using the reduce() transformation. It applies a function to
each value emitted by a Publisher<T>, sequentially and emits each successive value. We can use it to
aggregate values, to count the number of elements in multiple Redis sets:

Flux.just("Ben", "Michael", "Mark")

.flatMap(commands: :scard)

.reduce((sum, current) -> sum + current)

.subscribe(result -> System.out.println("Number of elements in sets: " +
result));

The aggregation function of reduce() is applied on each emitted value, so three times in the
example above. If you want to get the last value, which denotes the final result containing the

29

number of elements in all Redis sets, apply the last() transformation:

Flux.just("Ben", "Michael", "Mark")

.flatMap(commands::scard)

.reduce((sum, current) -> sum + current)

.last()

.subscribe(result -> System.out.println("Number of elements in sets: " +
result));

Now let’s take a look at grouping emitted items. The following example emits three items and
groups them by the beginning character.

Flux.just("Ben", "Michael", "Mark")
.groupBy(key -> key.substring(@, 1))
.subscribe(
groupedFlux -> {
groupedFlux.collectList().subscribe(list -> {
System.out.println("First character: "
elements: " + list);

b

+ groupedFlux.key() + ",

}
)

The example prints the following lines:

First character: B, elements: [Ben]
First character: M, elements: [Michael, Mark]

4.4.10. Absent values

The presence and absence of values is an essential part of reactive programming. Traditional
approaches consider null as an absence of a particular value. With Java 8, Optional<T> was
introduced to encapsulate nullability. Reactive Streams prohibits the use of null values.

In the scope of Redis, an absent value is an empty list, a non-existent key or any other empty data
structure. Reactive programming discourages the use of null as value. The reactive answer to
absent values is just not emitting any value that is possible due the 0 to N nature of Publisher<T>.

Suppose we have the keys Ben and Michael set each to the value value. We query those and another,
absent key with the following code:

Flux.just("Ben", "Michael", "Mark")
.flatMap(commands: :get)
.doOnNext(value -> System.out.println(value))
.subscribe();

30

The example prints the following lines:

value
value

The output is just two values. The GET to the absent key Mark does not emit a value.

The reactive API provides operators to work with empty results when you require a value. You can
use one of the following operators:

defaultIfEmpty: Emit a default value if the Publisher<T> did not emit any value at all

switchIfEmpty: Switch to a fallback Publisher<T> to emit values

Flux.hasElements/Flux.hasElement: Emit a Mono<Boolean> that contains a flag whether the original
Publisher<T> is empty

* next/last/elementAt: Positional operators to retrieve the first/last/Nth element or emit a default
value

4.4.11. Filtering items

The values emitted by a Publisher<T> can be filtered in case you need only specific results. Filtering
does not change the emitted values itself. Filters affect how many items and at which point (and if
at all) they are emitted.

Flux.just("Ben", "Michael", "Mark")
.filter(s -> s.startsWith("M"))
.flatMap(commands::get)
.subscribe(value -> System.out.println("Got value:

n

+ value));

The code will fetch only the keys Michael and Mark but not Ben. The filter criteria are whether the key
starts with a M.

You already met the last() filter to retrieve the last value:

Flux.just("Ben", "Michael", "Mark")
.last()

.subscribe(value -> System.out.println("Got value: " + value));
the extended variant of last() allows you to take the last N values:
Flux.just("Ben", "Michael", "Mark")
.takelast(3)
.subscribe(value -> System.out.println("Got value: " + value));

The example from above takes the last 2 values.

31

The opposite to next() is the first() filter that is used to retrieve the next value:

Flux.just("Ben", "Michael", "Mark")
.next()
.subscribe(value -> System.out.println("Got value:

+ value));

4.4.12. Error handling

Error handling is an indispensable component of every real world application and should to be
considered from the beginning on. Project Reactor provides several mechanisms to deal with
errors.

In general, you want to react in the following ways:

e Return a default value instead
* Use a backup publisher

* Retry the Publisher (immediately or with delay)

The following code falls back to a default value after it throws an exception at the first emitted
item:

Flux.just("Ben", "Michael", "Mark")
.doOnNext(value -> {
throw new I1legalStateException("Takes way too long");

)

.onErrorReturn("Default value")
.subscribe();

You can use a backup Publisher<T> which will be called if the first one fails.

Flux.just("Ben", "Michael", "Mark")
.doOnNext(value -> {
throw new I1legalStateException("Takes way too long");

1))
.switchOnError(commands.get("Default Key"))

.subscribe();

It is possible to retry the publisher by re-subscribing. Re-subscribing can be done as soon as
possible, or with a wait interval, which is preferred when external resources are involved.

Flux.just("Ben", "Michael", "Mark")
.flatMap(commands: :get)
.retry()

.subscribe();

32

Use the following code if you want to retry with backoff:

Flux.just("Ben", "Michael", "Mark")
.doOnNext(v -> {
if (new Random().nextInt(10) + 1 == 5) {
throw new RuntimeException("Boo!");

}
b
.doOnSubscribe(subscription ->
{
System.out.println(subscription);
1))

.retryWhen(throwableFlux -> Flux.range(1, 5)
.flatMap(i -> {
System.out.println(i);
return Flux.just(i)
.delay(Duration.of(i, ChronoUnit.SECONDS));

1)
.blockLast();

The attempts get passed into the retryWhen() method delayed with the number of seconds to wait.
The delay method is used to complete once its timer is done.

4.4.13. Schedulers and threads

Schedulers in Project Reactor are used to instruct multi-threading. Some operators have variants
that take a Scheduler as a parameter. These instruct the operator to do some or all of its work on a
particular Scheduler.

Project Reactor ships with a set of preconfigured Schedulers, which are all accessible through the
Schedulers class:

* Schedulers.parallel(): Executes the computational work such as event-loops and callback
processing.
» Schedulers.immediate(): Executes the work immediately in the current thread

» Schedulers.elastic(): Executes the I/O-bound work such as asynchronous performance of
blocking I/0O, this scheduler is backed by a thread-pool that will grow as needed

* Schedulers.newSingle(): Executes the work on a new thread
* Schedulers.fromExecutor(): Create a scheduler from a java.util.concurrent.Executor

e Schedulers.timer(): Create or reuse a hash-wheel based TimedScheduler with a resolution of
50m:s.

Do not use the computational scheduler for I/O.
Publishers can be executed by a scheduler in the following different ways:

* Using an operator that makes use of a scheduler

33

» Explicitly by passing the Scheduler to such an operator
* By using subscribeOn(Scheduler)
* By using publishOn(Scheduler)

Operators like buffer, replay, skip, delay, parallel, and so forth use a Scheduler by default if not
instructed otherwise.

All of the listed operators allow you to pass in a custom scheduler if needed. Sticking most of the
time with the defaults is a good idea.

If you want the subscribe chain to be executed on a specific scheduler, you use the subscribeOn()
operator. The code is executed on the main thread without a scheduler set:

Flux.just("Ben", "Michael", "Mark").flatMap(key -> {

System.out.println("Map 1: " + key + " (" + Thread.currentThread().
getName() + ")");

return Flux.just(key);

}

).flatMap(value -> {

System.out.println("Map 2:
.getName() + ")");

return Flux.just(value);

+ value + " (" + Thread.currentThread()

}

).subscribe();

The example prints the following lines:

Map 1: Ben (main)
Map 2: Ben (main)
Map 1: Michael (main)
Map 2: Michael (main)
Map 1: Mark (main)
Map 2: Mark (main)

This example shows the subscribeOn() method added to the flow (it does not matter where you add
it):

34

Flux.just("Ben", "Michael", "Mark").flatMap(key -> {

System.out.println("Map 1: " + key + " (" + Thread.currentThread().
getName() + ")");

return Flux.just(key);

}

).flatMap(value -> {

System.out.println("Map 2:
.getName() + ")");

return Flux.just(value);

+ value + " (" + Thread.currentThread()

}
).subscribeOn(Schedulers.parallel()).subscribe();

The output of the example shows the effect of subscribeOn(). You can see that the Publisher is
executed on the same thread, but on the computation thread pool:

Map 1: Ben (parallel-1)
Map 2: Ben (parallel-1)
Map 1: Michael (parallel-1)
Map 2: Michael (parallel-1)
Map 1: Mark (parallel-1)
Map 2: Mark (parallel-1)

If you apply the same code to lettuce, you will notice a difference in the threads on which the
second flatMap() is executed:

Flux.just("Ben", "Michael", "Mark").flatMap(key -> {

System.out.println("Map 1: " + key + " (" + Thread.currentThread().getName() + ")
");

return commands.set(key, key);
}).flatMap(value -> {

System.out.println("Map 2:
"))

return Flux.just(value);
}).subscribeOn(Schedulers.parallel()).subscribe();

"+ value + " (" + Thread.currentThread().getName() +

The example prints the following lines:

Map 1: Ben (parallel-1)

Map 1: Michael (parallel-1)

Map 1: Mark (parallel-1)

Map 2: OK (lettuce-nioEventLoop-3-1)
Map 2: OK (lettuce-nioEventLoop-3-1)
Map 2: OK (lettuce-nioEventlLoop-3-1)

Two things differ from the standalone examples:

35

1. The values are set rather concurrently than sequentially

2. The second flatMap() transformation prints the netty EventLoop thread name

This is because lettuce publishers are executed and completed on the netty EventLoop threads by
default.

publishOn instructs an Publisher to call its observer’s onNext, onError, and onCompleted methods on a
particular Scheduler. Here, the order matters:

Flux.just("Ben", "Michael", "Mark").flatMap(key -> {

System.out.println("Map 1: " + key + " (" + Thread.currentThread().getName() + ")
ol

return commands.set(key, key);
}).publishOn(Schedulers.parallel()).flatMap(value -> {

System.out.println("Map 2: " + value + " (" + Thread.currentThread().getName() +
Il)ll);

return Flux.just(value);
}).subscribe();

Everything before the publishOn() call is executed in main, everything below in the scheduler:

Map 1: Ben (main)
Map 1: Michael (main)
Map 1: Mark (main)
Map 2: OK (parallel-1)
Map 2: OK (parallel-1)
Map 2: OK (parallel-1)

Schedulers allow direct scheduling of operations. Refer to the Project Reactor documentation for
further information.

4.4.14. Redis Transactions

lettuce provides a convenient way to use Redis Transactions in a reactive way. Commands that
should be executed within a transaction can be executed after the MULTI command was executed.
Functional chaining allows to execute commands within a closure, and each command receives its
appropriate response. A cumulative response is also returned with TransactionResult in response to
EXEC.

See Transactions for further details.

Other examples

Blocking example

36

https://projectreactor.io/core/docs/api/reactor/core/scheduler/Schedulers.html
Transactions#transactions-using-the-reactive-api

RedisStringReactiveCommands<String, String> reactive
Mono<String> set = reactive.set("key", "value");
set.block();

client.connect().reactive();

Non-blocking example

RedisStringReactiveCommands<String, String> reactive
Mono<String> set = reactive.set("key", "value");
set.subscribe();

client.connect().reactive();

Functional chaining

RedisStringReactiveCommands<String, String> reactive = client.connect().reactive();
Flux.just("Ben", "Michael", "Mark")

.flatMap(key -> commands.sadd("seen", key))

.flatMap(value -> commands.randomkey())

.flatMap(commands: :type)

.doOnNext (System.out::println).subscribe();

Redis Transaction

RedisReactiveCommands<String, String> reactive = client.connect().reactive();

reactive.multi().doOnSuccess(s -> {
reactive.set("key", "1").doOnNext(s1 -> System.out.println(s1)).subscribe();
reactive.incr("key").doOnNext(s1 -> System.out.println(s1)).subscribe();
}).flatMap(s -> reactive.exec())
.doOnNext(transactionResults ->
System.out.println(transactionResults.wasRolledBack()))
.subscribe();

4.5. Publish/Subscribe

Lettuce provides support for Publish/Subscribe on Redis Standalone and Redis Cluster connections.
The connection is notified on message/subscribed/unsubscribed events after subscribing to
channels or patterns. Synchronous, asynchronous and reactive API’s are provided to interact with
Redis Publish/Subscribe features.

4.5.1. Subscribing

A connection can notify multiple listeners that implement RedisPubSubListener (Lettuce provides a
RedisPubSubAdapter for convenience). All listener registrations are Lkept within the
StatefulRedisPubSubConnection/StatefulRedisClusterConnection.

37

Example 24. Synchronous subscription

StatefulRedisPubSubConnection<String, String> connection = client.connectPubSub()
connection.addListener(new RedisPubSubListener<String, String>() { ... })

RedisPubSubCommands<String, String> sync = connection.sync();
sync.subscribe("channel");

// application flow continues

Example 25. Asynchronous subscription

StatefulRedisPubSubConnection<String, String> connection = client.connectPubSub()
connection.addListener (new RedisPubSubListener<String, String>() { ... })

RedisPubSubAsyncCommands<String, String> async = connection.async();
RedisFuture<Void> future = async.subscribe("channel");

// application flow continues

4.5.2. Reactive API

The reactive API provides hot Observables to listen on ChannelMessages and PatternMessages. The
Observables receive all inbound messages. You can do filtering using the observable chain if you
need to filter out the interesting ones, The Observable stops triggering events when the subscriber
unsubscribes from it.

Example 26. Reactive subscription

StatefulRedisPubSubConnection<String, String> connection = client.connectPubSub()

RedisPubSubReactiveCommands<String, String> reactive = connection.reactive();
reactive.subscribe("channel").subscribe();

reactive.observeChannels().doOnNext(patternMessage -> {...}).subscribe()

// application flow continues

4.5.3. Redis Cluster

Redis Cluster support Publish/Subscribe but requires some attention in general. User-space Pub/Sub
messages (Calling PUBLISH) are broadcasted across the whole cluster regardless of subscriptions to
particular channels/patterns. This behavior allows connecting to an arbitrary cluster node and

38

registering a subscription. The client isn’t required to connect to the node where messages were
published.

A cluster-aware Pub/Sub connection is provided by RedisClusterClient.connectPubSub() allowing to
listen for cluster reconfiguration and reconnect if the topology changes.

Example 27. Redis Cluster Publish/Subscribe

StatefulRedisClusterPubSubConnection<String, String> connection = clusterClient
.connectPubSub()
connection.addListener(new RedisPubSublListener<String, String>() { ... })

RedisPubSubCommands<String, String> sync = connection.sync();
sync.subscribe("channel");

Redis Cluster also makes a distinction between user-space and key-space messages. Key-space
notifications (Pub/Sub messages for key-activity) stay node-local and are not broadcasted across the
Redis Cluster. A notification about, e.g. an expiring key, stays local to the node on which the key
expired.

Clients that are interested in keyspace notifications must subscribe to the appropriate node (or
nodes) to receive these notifications. You can either use RedisClient.connectPubSub() to establish
Pub/Sub connections to the individual nodes or use RedisClusterClient's message propagation and
NodeSelection API to get a managed set of connections.

Example 28. Redis Cluster Publish/Subscribe with node message propagation

StatefulRedisClusterPubSubConnection<String, String> connection = clusterClient
.connectPubSub()

connection.addListener (new RedisClusterPubSublListener<String, String>() { ... })
connection.setNodeMessagePropagation(true);

RedisPubSubCommands<String, String> sync = connection.sync();
sync.masters().commands().subscribe("__keyspace@d__:*");

There are two things to pay special attention to:

1. Replication: Keys replicated to replica nodes, especially considering expiry, generate keyspace
events on all nodes holding the key. If a key expires and it is replicated, it will expire on the
master and all replicas. Each Redis server will emit keyspace events. Subscribing to non-master
nodes, therefore, will let your application see multiple events of the same type for the same key
because of Redis distributed nature.

2. Topology Changes: Subscriptions are issued either by using the NodeSelection API or by calling
subscribe(0) on the individual cluster node connections. Subscription registrations are not
propagated to new nodes that are added on a topology change.

39

4.6. Transactions/Multi

Transactions allow the execution of a group of commands in a single step. Transactions can be
controlled using WATCH, UNWATCH, EXEC, MULTI and DISCARD commands. Synchronous, asynchronous,
reactive and cluster API’s allow the use of transactions.

Redis responds to commands invoked during a transaction with a with QUEUED response. The
response related to the execution of the command is received at the moment the EXEC command is
processed, and the transaction is executed. The particular APIs behave in different ways:

* Synchronous: Invocations to the commands return null while they are invoked within a
transaction. The MULTI command carries the response of the particular commands.

* Asynchronous: The futures receive their response at the moment the EXEC command is
processed. This happens while the EXEC response is received.

* Reactive: An Obvervable<T> triggers onNext/onCompleted at the moment the EXEC command is
processed. This happens while the EXEC response is received.

As soon as you’re within a transaction, you won’t receive any responses on triggering the
commands

redis.multi() == "0K"
redis.set(key, value) == null
redis.exec() == List("0K")

You’ll receive the transactional response when calling exec() on the end of your transaction.

redis.multi() == "0K"
redis.set(key1, value) == null
redis.set(key2, value) == null
redis.exec() == List("0K", "OK")

4.6.1. Transactions using the asynchronous API

Asynchronous use of Redis transactions is very similar to non-transactional use. The asynchronous
API returns RedisFuture instances that eventually complete and they are handles to a future result.
Regular commands complete as soon as Redis sends a response. Transactional commands complete
as soon as the EXEC result is received.

Each command is completed individually with its own result so users of RedisFuture will see no
difference between transactional and non-transactional RedisFuture completion. That said,
transactional command results are available twice: Once via RedisFuture of the command and once
through List<Object> (TransactionResult since Lettuce 5) of the EXEC command future.

40

RedisAsyncCommands<String, String> async = client.connect().async();
RedisFuture<String> multi = async.multi();

RedisFuture<String> set = async.set("key", "value");
RedisFuture<List<Object>> exec = async.exec();

List<Object> objects = exec.get();
String setResult = set.get();

objects.get(0) == setResult

4.6.2. Transactions using the reactive API

The reactive API can be used to execute multiple commands in a single step. The nature of the
reactive API encourages nesting of commands. It is essential to understand the time at which an
Observable<T> emits a value when working with transactions. Redis responds with QUEUED to
commands invoked during a transaction. The response related to the execution of the command is
received at the moment the EXEC command is processed, and the transaction is executed.
Subsequent calls in the processing chain are executed after the transactional end. The following
code starts a transaction, executes two commands within the transaction and finally executes the
transaction.

RedisReactiveCommands<String, String> reactive = client.connect().reactive();
reactive.multi().subscribe(multiResponse -> {

reactive.set("key", "1").subscribe();

reactive.incr("key").subscribe();

reactive.exec().subscribe();

1}

4.6.3. Transactions on clustered connections

Clustered connections perform a routing by default. This means, that you can’t be really sure, on
which host your command is executed. So if you are working in a clustered environment, use
rather a regular connection to your node, since then you’ll bound to that node knowing which hash
slots are handled by it.

4.6.4. Examples

Multi with executing multiple commands

41

redis.multi();
redis.set("one", "1");
redis.set("two", "2");
redis.mget("one", "two");
redis.llen(key);

redis.exec(); // result: list("OK", "OK", Llist("1", "2"), OL)

Mult executing multiple asynchronous commands

redis.multi();

RedisFuture<String> set1 = redis.set("one", "1");
RedisFuture<String> set2 = redis.set("two", "2");
RedisFuture<String> mget = redis.mget("one", "two");

RedisFuture<Long> 1len = mgetredis.llen(key);

set1.thenAccept(value -> 0); // 0K
set2.thenAccept(value -> 0); // 0K

RedisFuture<List<Object>> exec = redis.exec(); // result: list("OK", "OK", Tist("1",
”2"), @L)

mget.get(); // List("1", "2")
1len.thenAccept(value -> 10); // 0L

Using WATCH

redis.watch(key);

RedisConnection<String, String> redis2 = client.connect();
redis2.set(key, value + "X");
redis2.close();

redis.multi();

redis.append(key, "foo");
redis.exec()); // result is a empty list because of the changed key

42

Chapter 5. High-Availability and Sharding

5.1. Master/Replica

Redis can increase availability and read throughput by using replication. Lettuce provides
dedicated Master/Replica support since 4.2 for topologies and ReadFrom-Settings.

Redis Master/Replica can be run standalone or together with Redis Sentinel, which provides
automated failover and master promotion. Failover and master promotion is supported in Lettuce
already since version 3.1 for master connections.

Connections can be obtained from the MasterSlave connection provider by supplying the client,
Codec, and one or multiple RedisURISs.

5.1.1. Redis Sentinel

Master/Replica using Redis Sentinel uses Redis Sentinel as registry and notification source for
topology events. Details about the master and its replicas are obtained from Redis Sentinel. Lettuce
subscribes to Redis Sentinel events for notifications to all supplied Sentinels.

5.1.2. Standalone Master/Replica

Running a Standalone Master/Replica setup required one seed address to establish a Redis
connection. Providing one RedisURI will discover other nodes which belong to the Master/Replica
setup and use the discovered addresses for connections. The initial URI can point either to a master
or a replica node.

5.1.3. Static Master/Replica with predefined node addresses

In some cases, topology discovery shouldn’t be enabled, or the discovered Redis addresses are not
suited for connections. AWS ElastiCache falls into this category. Lettuce allows to specify one or
more Redis addresses as List and predefine the node topology. Master/Replica URIs will be treated
in this case as static topology, and no additional hosts are discovered in such case. Redis Standalone
Master/Replica will discover the roles of the supplied RedisURIs and issue commands to the
appropriate node.

5.1.4. Topology discovery

Master-Replica topologies are either static or semi-static. Redis Standalone instances with attached
replicas provide no failover/HA mechanism. Redis Sentinel managed instances are controlled by
Redis Sentinel and allow failover (which include master promotion). The MasterSlave API supports
both mechanisms. The topology is provided by a TopologyProvider:

* MasterSlaveTopologyProvider: Dynamic topology lookup using the INFO REPLICATION output.
Replicas are listed as replicaN=... entries. The initial connection can either point to a master or a
replica, and the topology provider will discover nodes. The connection needs to be re-
established outside of Lettuce in a case of a Master/Replica failover or topology changes.

43

» StaticMasterSlaveTopologyProvider: Topology is defined by the list of URIs and the ROLE output.
MasterSlave uses only the supplied nodes and won’t discover additional nodes in the setup. The
connection needs to be re-established outside of Lettuce in case of a Master/Replica failover or
topology changes.

* SentinelTopologyProvider: Dynamic topology lookup using the Redis Sentinel API. In particular,
SENTINEL MASTER and SENTINEL REPLICAS output. Master/Replica failover is handled by Lettuce.

5.1.5. Topology Updates

» Standalone Master/Replica: Performs a one-time topology lookup which remains static
afterward

* Redis Sentinel: Subscribes to all Sentinels and listens for Pub/Sub messages to trigger topology
refreshing

Transactions

Since version 5.1, transactions and commands during a transaction are routed to the master node
to ensure atomic transaction execution on a single node. Transactions can contain read- and write-
operations so the driver cannot decide upfront which node can be used to run the actual
transaction.

Examples

Example 29. Redis Standalone Master/Replica

RedisClient redisClient = RedisClient.create();
StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave
.connect(redisClient, new Utf8StringCodec(),

RedisURI.create("redis://localhost"));
connection.setReadFrom(ReadFrom.MASTER_PREFERRED);
System.out.println("Connected to Redis");

connection.close();
redisClient.shutdown();

44

Example 30. Redis Sentinel

RedisClient redisClient = RedisClient.create();

StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave
.connect(redisClient, new Utf8StringCodec(),

RedisURI.create("redis-
sentinel://localhost:26379,1ocalhost:26380/0#mymaster"));
connection.setReadFrom(ReadFrom.MASTER PREFERRED);

System.out.println("Connected to Redis");

connection.close();
redisClient.shutdown();

Example 31. AWS ElastiCache Cluster

RedisClient redisClient = RedisClient.create();

List<RedisURI> nodes = Arrays.asList(RedisURI.create("redis://host1"),
RedisURI.create("redis://host2"),
RedisURI.create("redis://host3"));

StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave
.connect(redisClient, new Utf8StringCodec(), nodes);
connection.setReadFrom(ReadFrom.MASTER_PREFERRED);

System.out.println("Connected to Redis");

connection.close();
redisClient.shutdown();

5.2. Redis Sentinel

When using lettuce, you can interact with Redis Sentinel and Redis Sentinel-managed nodes in
multiple ways:

1. Direct connection to Redis Sentinel, for issuing Redis Sentinel commands
2. Using Redis Sentinel to connect to a master

3. Using Redis Sentinel to connect to masters and replicas through the [master-slave].

In both cases, you need to supply a RedisURI since the Redis Sentinel integration supports multiple
Sentinel hosts to provide high availability.

Please note: Redis Sentinel (lettuce 3.x) integration provides only asynchronous connections and no

45

#direct-connection-redis-sentinel-nodes

connection pooling.

5.2.1. Direct connection Redis Sentinel nodes

Lettuce exposes an API to interact with Redis Sentinel nodes directly. This is useful for performing
administrative tasks using lettuce. You can monitor new masters, query master addresses, replicas
and much more. A connection to a Redis Sentinel node is established by
RedisClient.connectSentinel(). Use a Publish/Subscribe connection to subscribe to Sentinel events.

5.2.2. Redis discovery using Redis Sentinel

One or more Redis Sentinels can monitor Redis instances . These Redis instances are usually
operated together with a replica of the Redis instance. Once the master goes down, the replica is
promoted to a master. Once a master instance is not reachable anymore, the failover process is
started by the Redis Sentinels. Usually, the client connection is terminated. The disconnect can
result in any of the following options:

1. The master comes back: The connection is restored to the Redis instance

2. A replica is promoted to a master: lettuce performs an address lookup using the masterId. As
soon as the Redis Sentinel provides an address the connection is restored to the new Redis
instance

Read more at http://redis.io/topics/sentinel

5.2.3. Examples

Example 32. Redis Sentinel node connection

RedisURI redisUri = RedisURI.create("redis://sentinelhost1:26379");
RedisClient client = new RedisClient(redisUri);

RedisSentinelAsyncConnection<String, String> connection = client
.connectSentinelAsync();

Map<String, String> map = connection.master("mymaster").get();

Example 33. Redis master discovery

RedisURI redisUri = RedisURI.Builder.sentinel("sentinelhost1", "mymaster")
.withSentinel("sentinelhost2").build();
RedisClient client = RedisClient.create(redisUri);

RedisConnection<String, String> connection = client.connect();

46

Pub-Sub-(4.0)
http://redis.io/topics/sentinel

Every time you connect to a Redis instance using Redis Sentinel, the Redis master

o is looked up using a new connection to a Redis Sentinel. This can be time-
consuming, especially when multiple Redis Sentinels are used and one or more of
them are not reachable.

5.3. Redis Cluster

Lettuce supports Redis Cluster with:

» Support of all CLUSTER commands

* Command routing based on the hash slot of the commands' key

* High-level abstraction for selected cluster commands

* Execution of commands on multiple cluster nodes

* MOVED and ASK redirection handling

* Obtaining direct connections to cluster nodes by slot and host/port (since 3.3)
» SSL and authentication (since 4.2)

* Periodic and adaptive cluster topology updates

e Publish/Subscribe

Connecting to a Redis Cluster requires one or more initial seed nodes. The full cluster topology view
(partitions) is obtained on the first connection so you’re not required to specify all cluster nodes.
Specifying multiple seed nodes helps to improve resiliency as lettuce is able to connect the cluster
even if a seed node is not available. Lettuce holds multiple connections, which are opened on
demand. You are free to operate on these connections.

Connections can be bound to specific hosts or nodelds. Connections bound to a nodeld will always
stick to the nodeld, even if the nodeld is handled by a different host. Requests to unknown nodeld’s
or host/ports that are not part of the cluster are rejected. Do not close the connections. Otherwise,
unpredictable behavior will occur. Keep also in mind that the node connections are used by the
cluster connection itself to perform cluster operations: If you block one connection all other users
of the cluster connection might be affected.

5.3.1. Command routing

The concept of Redis Cluster bases on sharding. Every master node within the cluster handles one
or more slots. Slots are the unit of sharding and calculated from the commands' key using CRC16 MOD
16384. Hash slots can also be specified using hash tags such as {user:1000}. foo.

Every request, which incorporates at least one key is routed based on its hash slot to the
corresponding node. Commands without a key are executed on the default connection that points
most likely to the first provided RedisURI. The same rule applies to commands operating on multiple
keys but with the limitation that all keys have to be in the same slot. Commands operating on
multiple slots will be terminated with a CROSSSLOT error.

47

http://redis.io/topics/cluster-tutorial
http://redis.io/topics/cluster-tutorial#redis-cluster-data-sharding

5.3.2. Cross-slot command execution and cluster-wide execution for
selected commands

Regular Redis Cluster commands are limited to single-slot keys operation - either single key
commands or multi-key commands that share the same hash slot.

The cross slot limitation can be mitigated by using the advanced cluster API for a set of selected
multi-key commands. Commands that operate on keys with different slots are decomposed into
multiple commands. The single commands are fired in a fork/join fashion. The commands are
issued concurrently to avoid synchronous chaining. Results are synchronized before the command
is completed.

Following commands are supported for cross-slot command execution:

* DEL: Delete the KEYs. Returns the number of keys that were removed.

» EXISTS: Count the number of KEYs that exist across the master nodes being responsible for the
particular key.

* MGET: Get the values of all given KEYs. Returns the values in the order of the keys.
 MSET: Set multiple key/value pairs for all given KEYs. Returns always 0K.

* TOUCH: Alters the last access time of all given KEYs. Returns the number of keys that were
touched.

* UNLINK: Delete the KEYs and reclaiming memory in a different thread. Returns the number of
keys that were removed.

Following commands are executed on multiple cluster nodes operations:

o CLIENT SETNAME: Set the client name on all known cluster node connections. Returns always 0K.
* KEYS: Return/Stream all keys that are stored on all masters.

» DBSIZE: Return the number of keys that are stored on all masters.

o FLUSHALL: Flush all data on the cluster masters. Returns always 0K.

* FLUSHDB: Flush all data on the cluster masters. Returns always 0K.

* RANDOMKEY: Return a random key from a random master.

» SCAN: Scan the keyspace across the whole cluster according to ReadFrom settings.

* SCRIPT FLUSH: Remove all the scripts from the script cache on all cluster nodes.

» SCRIPT LOAD: Load the script into the Lua script cache on all nodes.

o SCRIPT KILL: Kill the script currently in execution on all cluster nodes. This call does not fail
even if no scripts are running.

» SHUTDOWN: Synchronously save the dataset to disk and then shut down all nodes of the cluster.
Cross-slot command execution is available on the following APIs:

* RedisAdvancedClusterCommands

* RedisAdvanced(ClusterAsyncCommands

48

¢ RedisAdvancedClusterReactiveCommands

5.3.3. Execution of commands on one or multiple cluster nodes

Sometimes commands have to be executed on multiple cluster nodes. The advanced cluster API
allows to select a set of nodes (e.g. all masters, all replicas) and trigger a command on this set.

Example 34. Using NodeSelection API to read all keys from all replicas

RedisAdvancedClusterAsyncCommands<String, String> async = clusterClient.connect()

.async();
AsyncNodeSelection<String, String> replicas = connection.slaves();

AsyncExecutions<List<String>> executions = replicas.commands().keys("*");
executions.forEach(result -> result.thenAccept(keys -> System.out.println(keys)));

The commands are triggered concurrently. This API is currently only available for async
commands. Commands are dispatched to the nodes within the selection, the result
(CompletionStage) is available through AsyncExecutions.

A node selection can be either dynamic or static. A dynamic node selection updates its node set
upon a cluster topology view refresh. Node selections can be constructed by the following presets:

* masters

* slaves (operate on connections with activated READONLY mode)

 all nodes
A custom selection of nodes is available by implementing custom predicates or lambdas.

The particular results map to a cluster node (RedisClusterNode) that was involved in the node
selection. You can obtain the set of involved RedisClusterNodes and all results as CompletableFuture
from AsyncExecutions.

The node selection API is a technical preview and can change at any time. That approach allows
powerful operations but it requires further feedback from the users. So feel free to contribute.

5.3.4. Refreshing the cluster topology view

The Redis Cluster configuration may change at runtime. New nodes can be added, the master for a
specific slot can change. Lettuce handles MOVED and ASK redirects transparently but in case too many
commands run into redirects, you should refresh the cluster topology view. The topology is bound
to a RedisClusterClient instance. All cluster connections that are created by one RedisClusterClient
instance share the same cluster topology view. The view can be updated in three ways:

1. Either by calling RedisClusterClient.reloadPartitions

2. Periodic updates in the background based on an interval

49

#user-content-refreshing-the-cluster-topology-view
http://redis.paluch.biz/docs/api/current/com/lambdaworks/redis/cluster/api/async/RedisAdvancedClusterAsyncCommands.html#nodes-java.util.function.Predicate-

3. Adaptive updates in the background based on persistent disconnects and MOVED/ASK redirections

By default, commands follow -ASK and -MOVED redirects up to 5 times until the command execution
is considered to be failed. Background topology updating starts with the first connection obtained
through RedisCluster(Client.

5.3.5. Connection Count for a Redis Cluster Connection Object

With Standalone Redis, a single connection object correlates with a single transport connection.
Redis Cluster works differently: A connection object with Redis Cluster consists of multiple
transport connections. These are:

» Default connection object (Used for key-less commands and for Pub/Sub message publication)
* Connection per node (read/write connection to communicate with individual Cluster nodes)

* When using ReadFrom: Read-only connection per read replica node (read-only connection to read
data from read replicas)

Connections are allocated on demand and not up-front to start with a minimal set of connections.
Formula to calculate the maximum number of transport connections for a single connection object:

1T+ (N*2)

Where N is the number of cluster nodes.

Apart of connection objects, RedisClusterClient uses additional connections for topology refresh.
These are created on topology refresh and closed after obtaining the topology:

 Set of connections for cluster topology refresh (a connection to each cluster node)

5.3.6. Client-options

See Cluster-specific Client options.

Examples

50

Example 35. Connecting to a Redis Cluster

RedisURI redisUri = RedisURI.Builder.redis("localhost").withPassword(
"authentication").build();

RedisClusterClient clusterClient = RedisClusterClient.create(redisUri);
StatefulRedisClusterConnection<String, String> connection = clusterClient.connect

();

RedisAdvancedClusterCommands<String, String> syncCommands = connection.sync();

connection.close();
clusterClient.shutdown();

Example 36. Connecting to a Redis Cluster with multiple seed nodes

RedisURI node1
RedisURI node2

RedisURI.create("nodel1", 6379);
RedisURI.create("node2", 6379);

RedisClusterClient clusterClient = RedisClusterClient.create(Arrays.asList(nodel,
node?));
StatefulRedisClusterConnection<String, String> connection

();

RedisAdvancedClusterCommands<String, String> syncCommands = connection.sync();

clusterClient.connect

connection.close();
clusterClient.shutdown();

Example 37. Enabling periodic cluster topology view updates

RedisClusterClient clusterClient = RedisClusterClient.create(RedisURI.create(
"localhost", 6379));

ClusterTopologyRefreshOptions topologyRefreshOptions =
ClusterTopologyRefreshOptions.builder()
.enablePeriodicRefresh(10, TimeUnit.MINUTES)
.build();

clusterClient.setOptions(ClusterClientOptions.builder()

.topologyRefreshOptions(topologyRefreshOptions)
.build());

clusterClient.shutdown();

Example 38. Enabling adaptive cluster topology view updates

32

RedisURI node1
RedisURI node2

RedisURI.create("node1", 6379);
RedisURI.create("node2", 6379);

RedisClusterClient clusterClient = RedisClusterClient.create(Arrays.asList(nodel,
node?));

ClusterTopologyRefreshOptions topologyRefreshOptions =
ClusterTopologyRefreshOptions.builder()
.enableAdaptiveRefreshTrigger(RefreshTrigger
.MOVED_REDIRECT, RefreshTrigger.PERSISTENT_RECONNECTS)
.adaptiveRefreshTriggersTimeout (30, TimeUnit
.SECONDS)
.build();

clusterClient.setOptions(ClusterClientOptions.builder()

.topologyRefreshOptions(topologyRefreshOptions)
.build());

clusterClient.shutdown();

Example 39. Obtaining a node connection

RedisURI node1
RedisURI node2

RedisURI.create("node1", 6379);
RedisURI.create("node2", 6379);

RedisClusterClient clusterClient = RedisClusterClient.create(Arrays.asList(nodeT,
node?));
StatefulRedisClusterConnection<String, String> connection = cluster(Client.connect

();

RedisClusterCommands<String, String> nodel = connection.getConnection("host",
7379).sync();

// do not close nodeT

connection.close();
clusterClient.shutdown();

5.4. ReadFrom Settings

The ReadFrom setting describes how Lettuce routes read operations to replica nodes.

By default, Lettuce routes its read operations in multi-node connections to the master node.
Reading from the master returns the most recent version of the data because write operations are
issued to the single master node. Reading from masters guarantees strong consistency.

You can reduce latency or improve read throughput by distributing reads to replica members for
applications that do not require fully up-to-date data.

Be careful if using other ReadFrom settings than MASTER. Settings other than MASTER may return stale
data because the replication is asynchronous. Data in the replicas may not hold the most recent
data.

5.4.1. Redis Cluster

Redis Cluster is a multi-node operated Redis setup that uses one or more master nodes and allows
to setup replica nodes. Redis Cluster connections allow to set a ReadFrom setting on connection level.
This setting applies for all read operations on this connection.

33

Example 40. Enable Replica reads with ReadFrom.REPLICA

RedisClusterClient client = RedisClusterClient.create(RedisURI.create("host",
7379));

StatefulRedisClusterConnection<String, String> connection = client.connect();
connection.setReadFrom(ReadFrom.REPLICA);

RedisAdvancedClusterCommands<String, String> sync = connection.sync();
sync.set(key, "value");

sync.get(key); // replica read

connection.close();
client.shutdown();

5.4.2. Master/Replica connections

Redis nodes can be operated in a Master/Replica setup to achieve availability and performance.
Master/Replica setups can be run either Standalone or managed using Redis Sentinel. Lettuce
allows to use replica nodes for read operations by using the MasterReplica API that supports both
Master/Replica setups:

1. Redis Standalone Master/Replica (no failover)

2. Redis Sentinel Master/Replica (Sentinel-managed failover)

The resulting connection uses in any case the primary connection-point to dispatch non-read
operations.

Redis Sentinel

Master/Replica with Redis Sentinel is very similar to regular Redis Sentinel operations. When the
master fails over, a replica is promoted by Redis Sentinel to the new master and the client obtains
the new topology from Redis Sentinel.

Connections to Master/Replica require one or more Redis Sentinel connection points and a master
name. The primary connection point is the Sentinel monitored master node.

54

Example 41. Using ReadFrom with Master/Replica and Redis Sentinel

RedisURI sentinelUri = RedisURI.Builder.sentinel("sentinel-host", 26379, "master-
name").build();
RedisClient client = RedisClient.create();

StatefulRedisMasterReplicaConnection<String, String> connection = MasterReplica
.connect(

client,

new Utf8StringCodec(),

sentinelUri);

connection.setReadFrom(ReadFrom.REPLICA);
connection.sync().get("key"); // Replica read

connection.close();
client.shutdown();

Redis Standalone

Master/Replica with Redis Standalone is very similar to regular Redis Standalone operations. A
Redis Standalone Master/Replica setup is static and provides no built-in failover. Replicas are read
from the Redis Master node’s INFO command.

Connecting to Redis Standalone Master/Replica nodes requires connections to use the Redis Master
for the RedisURI. The node used within the RedisURI is the primary connection point.

Example 42. Using ReadFrom with Master/Replica and Redis S