W | cttuce

Lettuce Reference Guide

Mark Paluch

5.2.0.RELEASE

Table of Contents

. Overview
1.1. Knowing Redis
1.2. Project Reactor

1.3. Non-blocking API for Redis

1.4. Requirements
1.5. Additional Help Resources
1.5.1. Support

1.5.2. Following Development

1.5.3. Project Metadata
1.6. Where to go from here
. New & Noteworthy
2.1. What’s new in Lettuce 5.2
2.2. What’s new in Lettuce 5.1
2.3. What’s new in Lettuce 5.0
. Getting Started
3.1. 1. Get it
3.1.1. For Maven users:
3.1.2. For Ivy users:
3.1.3. For Gradle users:
3.1.4. Plain Java
3.2. 2. Start coding
. Connecting Redis
4.1. URI syntax
4.2. Basic Usage
4.2.1. RedisURI
4.2.2. Exceptions
4.2.3. Examples
4.3. Asynchronous API
4.3.1. Motivation

4.3.2. Creating futures using lettuce

4.3.3. Consuming futures
4.3.4. Synchronizing futures
4.3.5. Error handling
4.3.6. Examples

4.4. Reactive API
4.4.1. Motivation

4.4.2. Understanding Reactive Streams
4.4.3. Understanding Publishers

© 00 0 g U1l U1 Ul gl Ul Ul Ul R R R RN NN NN R R R R,

DN NN RN R R R R e e
W W NN R O g U Ul =B = o O

4.4.4. A word on the lettuce Reactive API
4.4.5. Consuming Publisher<T>

4.4.6. From push to pull

4.4.7. Creating Flux and Mono using lettuce
4.4.8. Hot and Cold Publishers

4.4.9. Transforming publishers

4.4.10. Absent values

4.4.11. Filtering items

4.4.12. Error handling

4.4.13. Schedulers and threads

4.4.14. Redis Transactions

4.5. Publish/Subscribe

4.5.1. Subscribing
4,5.2. Reactive API
4.5.3. Redis Cluster

4.6. Transactions/Multi

4.6.1. Transactions using the asynchronous API
4.6.2. Transactions using the reactive API
4.6.3. Transactions on clustered connections

4.6.4. Examples

5. High-Availability and Sharding
5.1. Master/Replica

5.1.1. Redis Sentinel

5.1.2. Standalone Master/Replica

5.1.3. Static Master/Replica with predefined node addresses
5.1.4. Topology discovery

5.1.5. Topology Updates

5.2. Redis Sentinel

5.2.1. Direct connection Redis Sentinel nodes
5.2.2. Redis discovery using Redis Sentinel

5.2.3. Examples

5.3. Redis Cluster

5.3.1. Command routing

5.3.2. Cross-slot command execution and cluster-wide execution for selected commands

5.3.3. Execution of commands on one or multiple cluster nodes

5.3.4. Refreshing the cluster topology view

5.3.5. Connection Count for a Redis Cluster Connection Object

5.3.6. Client-options

5.4. ReadFrom Settings

5.4.1. Redis Cluster

5.4.2. Master/Replica connections

24
24
27
28
29
29
30
31
32
33
36
37
37
38
38
40
40
41
41
41
43
43
43
43
43
43
44
45
46
46
46
47
47
48
49
49
50
50
53
53
54

5.4.3. Use Cases for non-master reads

5.4.4. Read from settings

6. Working with dynamic Redis Command Interfaces

6.1. Introduction
6.2. Command methods
6.3. Defining command methods
6.3.1. Command naming
6.3.2. CamelCase in method names
6.3.3. @Command annotation
6.3.4. Parameters
6.3.5. Codecs
6.3.6. Response types
6.4. Execution models
6.4.1. Synchronous (Blocking) Execution
6.4.2. Asynchronous (Future) Execution
6.4.3. Reactive Execution
6.4.4. Batch Execution

7. Advanced usage

7.1. Configuring Client resources
7.1.1. Creating Client resources
7.1.2. Using and reusing ClientResources
7.1.3. Configuration settings
7.1.4. Advanced settings
7.2. Client Options
7.2.1. Cluster-specific options
7.2.2. Request queue size and cluster
7.3. SSL Connections
7.3.1. Limitations
7.3.2. Connection Procedure and Reconnect
7.3.3. Certificate Chains/Root Certificate/Self-Signed Certificates
7.3.4. Host/Peer Verification
7.3.5. StartTLS
7.4. Native Transports
7.4.1. Limitations
7.5. Unix Domain Sockets
7.6. Streaming API
7.6.1. Examples
7.7. Events
7.7.1. Before 3.4/4.1
7.7.2. Since 3.4/4.1

7.8. Pipelining and command flushing

56
56
57
57
58
39
39
60
60
61
63
63
64
64
65
65
66
68
68
68
68
69
70
72
74
77
77
78
78
78
79
79
80
81
81
82
82
83
83
84
86

7.8.1. Command flushing
7.9. Connection Pooling
7.9.1. Is connection pooling necessary?
7.9.2. Execution Models
7.9.3. Synchronous Connection Pooling
7.9.4. Asynchronous Connection Pooling
7.10. Custom commands
7.10.1. Mechanics of Lettuce commands
7.10.2. Synchronous, asynchronous and reactive
7.11. Command execution reliability
7.11.1. General
7.11.2. What does at-most-once mean?
7.11.3. Why No Guaranteed Delivery?
7.11.4. Message Ordering
7.11.5. Failures and at-least-once execution
7.11.6. Switching between at-least-once and at-most-once operations
7.11.7. Clustered operations
8. Integration and Extension
8.1. Codecs
8.1.1. Why ByteBuffer instead of byte[]
8.1.2. Diversity in Codecs
8.1.3. Multi-Threading
8.1.4. Compression
8.1.5. Examples
8.2. CDI Support
8.2.1. RedisURI producer
8.2.2. Injection
8.2.3. Activating Lettuce’s CDI extension
8.3. Spring Support
8.3.1. Spring Data Redis
8.3.2. Redis Client
8.3.3. Redis Cluster Client

87
88
89
89
89
90
92
93
95
97
98
98
98
99
99
101
101
102
102
102
103
103
103
103
105
106
106
107
107
108
108
109

Chapter 1. Overview

This document is the reference guide for Lettuce. It explains how to use Lettuce, its concepts,
semantics, and the syntax.

You can read this reference guide in a linear fashion, or you can skip sections if something does not
interest you.

This section provides some basic introduction to Redis. The rest of the document refers only to
Lettuce features and assumes the user is familiar with Redis concepts.

1.1. Knowing Redis

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of
solutions, terms and patterns (to make things worse even the term itself has multiple meanings).
While some of the principles are common, it is crucial that the user is familiar to some degree with
Redis. The best way to get acquainted to this solutions is to read their documentation and follow
their documentation - it usually doesn’t take more then 5-10 minutes to go through them and if you
are coming from an RDMBS-only background many times these exercises can be an eye opener.

The jumping off ground for learning about Redis is redis.io. Here is a list of other useful resources:

¢ The interactive tutorial introduces Redis.

* The command references explains Redis commands and contains links to getting started guides,
reference documentation and tutorials.

1.2. Project Reactor

Reactor is a highly optimized reactive library for building efficient, non-blocking applications on
the JVM based on the Reactive Streams Specification. Reactor based applications can sustain very
high throughput message rates and operate with a very low memory footprint, making it suitable
for building efficient event-driven applications using the microservices architecture.

Reactor implements two publishers Flux<T> and Mono<T>, both of which support non-blocking
back-pressure. This enables exchange of data between threads with well-defined memory usage,
avoiding unnecessary intermediate buffering or blocking.

1.3. Non-blocking API for Redis

Lettuce is a scalable thread-safe Redis client based on netty and Reactor. Lettuce provides
synchronous, asynchronous and reactive APIs to interact with Redis.

1.4. Requirements

Lettuce 4.x and 5.x binaries require JDK level 8.0 and above.

In terms of Redis, at least 2.6.

http://www.google.com/search?q=nosql+acronym
http://www.redis.io/
http://try.redis.io/
http://redis.io/commands
https://projectreactor.io
https://github.com/reactive-streams/reactive-streams-jvm
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://netty.io
http://redis.io/

1.5. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what
we think is an easy to follow guide for starting with Lettuce. However, if you encounter issues or
you are just looking for an advice, feel free to use one of the links below:

1.5.1. Support
There are a few support options available:

* Lettuce on Stackoverflow Stackoverflow is a tag for all Lettuce users to share information and
help each other. Note that registration is needed only for posting.

* Get in touch with the community on Gitter.

* Google Group: lettuce-redis-client-users or lettuce-redis-client-users@googlegroups.com.

Report bugs (or ask questions) in Github issues https://github.com/lettuce-io/lettuce-core/issues.

1.5.2. Following Development

For information on the Lettuce source code repository, nightly builds and snapshot artifacts please
see the Lettuce homepage. You can help make lettuce best serve the needs of the lettuce community
by interacting with developers through the Community on Stackoverflow. To follow developer
activity look for the mailing list information on the lettuce homepage. If you encounter a bug or
want to suggest an improvement, please create a ticket on the lettuce issue tracker.

1.5.3. Project Metadata

 Version Control - https://github.com/lettuce-io/lettuce-core

* Releases and Binary Packages — https://github.com/lettuce-io/lettuce-core/releases
* Issue tracker - https://github.com/lettuce-io/lettuce-core/issues

* Release repository — https://repol.maven.org/maven2/ (Maven Central)

* Snapshot repository - https://oss.sonatype.org/content/repositories/snapshots/ (OSS Sonatype
Snapshots)

1.6. Where to go from here

* Head to Getting Started if you feel like jumping straight into the code.
* Go to High-Availability and Sharding for Master/Replica, Redis Sentinel and Redis Cluster topics.
 In order to dig deeper into the core features of Reactor:

o If you’re looking for client configuration options, performance related behavior and how to
use various transports, go to Advanced usage.

o See Integration and Extension for extending Lettuce with codecs or integrate it in your
CDI/Spring application.

o You want to know more about at-least-once and at-most-once? Take a look into Command

http://stackoverflow.com/questions/tagged/lettuce
https://gitter.im/lettuce-io/Lobby
https://groups.google.com/d/forum/lettuce-redis-client-users
mailto:lettuce-redis-client-users@googlegroups.com
https://github.com/lettuce-io/lettuce-core/issues
https://lettuce.io
http://stackoverflow.com/questions/tagged/lettuce
https://lettuce.io
https://github.com/lettuce-io/lettuce-core/issues
https://github.com/lettuce-io/lettuce-core
https://github.com/lettuce-io/lettuce-core/releases
https://github.com/lettuce-io/lettuce-core/issues
https://repo1.maven.org/maven2/
https://oss.sonatype.org/content/repositories/snapshots/

execution reliability.

Chapter 2. New & Noteworthy

2.1. What’s new in Lettuce 5.2

» Allow randomization of read candidates using Redis Cluster

» SSL support for Redis Sentinel

2.2. What’s new in Lettuce 5.1

* Add support for ZPOPMIN, ZPOPMAX, BZPOPMIN, BZPOPMAX commands.

Add support for Redis Command Tracing through Brave, see Configuring Client resources.

Add support for Redis Streams.

Asynchronous connect () for Master/Replica connections.

Asynchronous Connection Pooling through AsyncConnectionPoolSupport and AsyncPool.

Dedicated exceptions for Redis LOADING, BUSY, and NOSCRIPT responses.

Commands in at-most-once mode (auto-reconnect disabled) are now canceled already on
disconnect.

Global command timeouts (also for reactive and asynchronous API usage) configurable through
Client Options.

Host and port mappers for Lettuce usage behind connection tunnels/proxies through
SocketAddressResolver, see Configuring Client resources.

SCRIPT LOAD dispatch to all cluster nodes when issued through RedisAdvanced(ClusterCommands.

Reactive ScanStream to iterate over the keyspace using SCAN commands.

Transactions using Master/Replica connections are bound to the master node.

2.3. What’s new in Lettuce 5.0

* New artifact coordinates: io.lettuce:lettuce-core and packages moved from
com. lambdaworks.redis to io.lettuce.core.

» Reactive API now Reactive Streams-based using Project Reactor.

* Redis Command Interfaces supporting dynamic command invocation and Redis Modules.
* Enhanced, immutable Key-Value objects.

* Asynchronous Cluster connect.

» Native transport support for Kqueue on macOS systems.

* Removal of support for Guava.

* Removal of deprecated RedisConnection and RedisAsyncConnection interfaces.

* Java 9 compatibility.

* HTML and PDF reference documentation along with a new project website: https://lettuce.io.

https://redis.io/topics/streams-intro
https://projectreactor.io/
https://lettuce.io

Chapter 3. Getting Started

You can get started with Lettuce in various ways.

3.1. 1. Get it

3.1.1. For Maven users:
Add these lines to file pom.xml:
<dependency>
<groupId>io.lettuce</groupld>
<artifactId>lettuce-core</artifactId>

<version>5.2.0.RELEASE</version>
</dependency>

3.1.2. For Ivy users:
Add these lines to file ivy.xml:
<ivy-module>
<dependencies>
<dependency org="1io.lettuce" name="lettuce-core" rev="5.2.0.RELEASE"/>

</dependencies>
</ivy-module>

3.1.3. For Gradle users:

Add these lines to file build.gradle:

dependencies {
compile 'io.lettuce:lettuce-core:5.2.0.RELEASE'

}

3.1.4. Plain Java

Download the latest binary package from https://github.com/lettuce-io/lettuce-core/releases and
extract the archive.

3.2. 2. Start coding

So easy! No more boring routines, we can start.

Import required classes:

https://github.com/lettuce-io/lettuce-core/releases

import io.lettuce.core.*;

and now, write your code:

RedisClient redisClient = RedisClient.create("redis://password@localhost:6379/0");
StatefulRedisConnection<String, String> connection = redisClient.connect();
RedisCommands<String, String> syncCommands = connection.sync();

syncCommands.set("key", "Hello, Redis!");

connection.close();
redisClient.shutdown();

Done!
Do you want to see working examples?

» Standalone Redis

» Standalone Redis with SSL

* Redis Sentinel

* Redis Cluster

» Connecting to a ElastiCache Master

* Connecting to ElastiCache with Master/Replica
* Connecting to Azure Redis Cluster

* Lettuce with Spring

https://github.com/lettuce-io/lettuce-core/blob/5.2.0.RELEASE/src/test/java/io/lettuce/examples/ConnectToRedis.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.0.RELEASE/src/test/java/io/lettuce/examples/ConnectToRedisSSL.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.0.RELEASE/src/test/java/io/lettuce/examples/ConnectToRedisUsingRedisSentinel.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.0.RELEASE/src/test/java/io/lettuce/examples/ConnectToRedisCluster.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.0.RELEASE/src/test/java/io/lettuce/examples/ConnectToElastiCacheMaster.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.0.RELEASE/src/test/java/io/lettuce/examples/ConnectToMasterSlaveUsingElastiCacheCluster.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.0.RELEASE/src/test/java/io/lettuce/examples/ConnectToRedisClusterSSL.java
https://github.com/lettuce-io/lettuce-core/blob/5.2.0.RELEASE/src/test/java/io/lettuce/examples/SpringExample.java

Chapter 4. Connecting Redis

Connections to a Redis Standalone, Sentinel, or Cluster require a specification of the connection
details. The unified form is RedisURI. You can provide the database, password and timeouts within
the RedisURI. You have following possibilities to create a RedisURI:

1. Use an URI:
RedisURI.create("redis://localhost/");

2. Use the Builder

RedisURI.Builder.redis("localhost", 6379).auth("password").database(1).build();

3. Set directly the values in RedisURI

new RedisURI("localhost", 6379, 60, TimeUnit.SECONDS);

4.1. URI syntax

Redis Standalone

redis :/| [password@] host [: port] [/ databasel[? [timeout=timeout[d|h|m|s|ms]|us|ns]]
[&_database=database_]]

Redis Standalone (SSL)

rediss :| [: password@] host [: port] [/ database]l? [timeout=timeout[d|h|m|s|ms]|us|ns]]
[& database=database]]

Redis Standalone (Unix Domain Sockets)
redis-socket :/[path [?[timeout=timeout[d|h|m|s|ms|us|ns]][&_database=database_]]
Redis Sentinel

redis-sentinel :/| [: password@] hostl1[: portl] [, hostZ[: port2]] [, hostN[: portN]] [/ database][?
[timeout=timeout[d|h|m|s|ms|us|ns]] [&_sentinelMasterId=sentinelMasterId_]
[&_database=database_]]

Schemes

e redis Redis Standalone
e rediss Redis Standalone SSL

e redis-socket Redis Standalone Unix Domain Socket

e redis-sentinel Redis Sentinel
Timeout units

* d Days

* h Hours

* m Minutes

e s Seconds

e ms Milliseconds
* us Microseconds
* ns Nanoseconds

Hint: The database parameter within the query part has higher precedence than the database in the
path.

RedisURI supports Redis Standalone, Redis Sentinel and Redis Cluster with plain, SSL, TLS and unix
domain socket connections.

4.2. Basic Usage

Example 1. Basic usage

RedisClient client = RedisClient.create("redis://localhost"); ©)

StatefulRedisConnection<String, String> connection = client.connect(); @

RedisCommands<String, String> commands = connection.sync(); ®
String value = commands.get("foo"); @
connection.close(); ®
client.shutdown(); ®

@ Create the RedisClient instance and provide a Redis URI pointing to localhost, Port 6379
(default port).

@ Open a Redis Standalone connection. The endpoint is used from the initialized RedisClient

® Obtain the command API for synchronous execution. Lettuce supports asynchronous and
reactive execution models, too.

@ Issue a GET command to get the key foo.

® Close the connection when youre done. This happens usually at the very end of your
application. Connections are designed to be long-lived.

® Shut down the client instance to free threads and resources. This happens usually at the
very end of your application.

Each Redis command is implemented by one or more methods with names identical to the
lowercase Redis command name. Complex commands with multiple modifiers that change the
result type include the CamelCased modifier as part of the command name, e.g. zrangebyscore and
zrangebyscoreWithScores.

Redis connections are designed to be long-lived and thread-safe, and if the connection is lost will
reconnect until close() is called. Pending commands that have not timed out will be (re)sent after
successful reconnection.

All connections inherit a default timeout from their RedisClient and

and will throw a RedisException when non-blocking commands fail to return a result before the
timeout expires. The timeout defaults to 60 seconds and may be changed in the RedisClient or for
each connection. Synchronous methods will throw a RedisCommandExecutionException in case Redis
responds with an error. Asynchronous connections do not throw exceptions when Redis responds
with an error.

4.2.1. RedisURI

The RedisURI contains the host/port and can carry authentication/database details. On a successful

connect you get authenticated, and the database is selected afterward. This applies
also after re-establishing a connection after a connection loss.

A Redis URI can also be created from an URI string. Supported formats are:

* redis://[password@]host[:port][/databaseNumber] Plaintext Redis connection
e rediss://[password@]host[:port][/databaseNumber] SSL Connections Redis connection

* redis-sentinel://[password@]host[:port][,host2[:port2]][/databaseNumber]J#sentinelMasterId
for using Redis Sentinel

* redis-socket:///path/to/socket Unix Domain Sockets connection to Redis

4.2.2. Exceptions

In the case of an exception/error response from Redis, you’ll receive a RedisException containing
the error message. RedisException is a RuntimeException.

4.2.3. Examples

Example 2. Using host and port and set the default timeout to 20 seconds

RedisClient client = RedisClient.create(RedisURI.create("localhost", 6379));
client.setDefaultTimeout(20, TimeUnit.SECONDS);

// 1

client.shutdown();

Example 3. Using RedisURI

RedisURI redisUri = RedisURI.Builder.redis("localhost")
.withPassword("authentication")
.withDatabase(2)
.build();

RedisClient client = RedisClient.create(redisUri);

// T

client.shutdown();

10

Example 4. SSL RedisURI

RedisURI redisUri = RedisURI.Builder.redis("localhost")
.withSs1l(true)
.withPassword("authentication")
.withDatabase(2)
.build();

RedisClient client = RedisClient.create(redisUri);

// 1

client.shutdown();

Example 5. String RedisURI

RedisURI redisUri = RedisURI.create("redis://authentication@localhost/2");
RedisClient client = RedisClient.create(redisUri);

// 1

client.shutdown();

4.3. Asynchronous API

This guide will give you an impression how and when to use the asynchronous API provided by
lettuce 4.x.

4.3.1. Motivation

Asynchronous methodologies allow you to utilize better system resources, instead of wasting
threads waiting for network or disk I/O. Threads can be fully utilized to perform other work
instead. lettuce facilitates asynchronicity from building the client on top of netty that is a
multithreaded, event-driven I/O framework. All communication is handled asynchronously. Once
the foundation is able to processes commands concurrently, it is convenient to take advantage from
the asynchronicity. It is way harder to turn a blocking and synchronous working software into a
concurrently processing system.

Understanding Asynchronicity

Asynchronicity permits other processing to continue before the transmission has finished and the
response of the transmission is processed. This means, in the context of lettuce and especially Redis,
that multiple commands can be issued serially without the need of waiting to finish the preceding
command. This mode of operation is also known as Pipelining. The following example should give
you an impression of the mode of operation:

11

http://netty.io
http://redis.io/topics/pipelining

* Given client A and client B

* Client A triggers command SET A=B

* Client B triggers at the same time of Client A command SET (=D

* Redis receives command from Client A

* Redis receives command from Client B

* Redis processes SET A=B and responds 0K to Client A

* Client A receives the response and stores the response in the response handle
* Redis processes SET (=D and responds 0K to Client B

* Client B receives the response and stores the response in the response handle

Both clients from the example above can be either two threads or connections within an
application or two physically separated clients.

Clients can operate concurrently to each other by either being separate processes, threads, event-
loops, actors, fibers, etc. Redis processes incoming commands serially and operates mostly single-
threaded. This means, commands are processed in the order they are received with some
characteristic that we’ll cover later.

Let’s take the simplified example and enhance it by some program flow details:

e Given client A

* Client A triggers command SET A=B

Client A uses the asynchronous API and can perform other processing
* Redis receives command from Client A
* Redis processes SET A=B and responds 0K to Client A

* Client A receives the response and stores the response in the response handle

Client A can access now the response to its command without waiting (non-blocking)

The Client A takes advantage from not waiting on the result of the command so it can process
computational work or issue another Redis command. The client can work with the command
result as soon as the response is available.

Impact of asynchronicity to the synchronous API

While this guide helps you to understand the asynchronous API it is worthwhile to learn the impact
on the synchronous API. The general approach of the synchronous API is no different than the
asynchronous API. In both cases, the same facilities are used to invoke and transport commands to
the Redis server. The only difference is a blocking behavior of the caller that is using the
synchronous API. Blocking happens on command level and affects only the command completion
part, meaning multiple clients using the synchronous API can invoke commands on the same
connection and at the same time without blocking each other. A call on the synchronous API is
unblocked at the moment a command response was processed.

e Given client A and client B

12

* Client A triggers command SET A=B on the synchronous API and waits for the result

* Client B triggers at the same time of Client A command SET (=D on the synchronous API and
waits for the result

* Redis receives command from Client A

* Redis receives command from Client B

* Redis processes SET A=B and responds 0K to Client A

* Client A receives the response and unblocks the program flow of Client A

* Redis processes SET (=D and responds 0K to Client B

* Client B receives the response and unblocks the program flow of Client B
However, there are some cases you should not share a connection among threads to avoid side-
effects. The cases are:

* Disabling flush-after-command to improve performance

* The use of blocking operations like BLPOP. Blocking operations are queued on Redis until they
can be executed. While one connection is blocked, other connections can issue commands to
Redis. Once a command unblocks the blocking command (that said an LPUSH or RPUSH hits the
list), the blocked connection is unblocked and can proceed after that.

¢ Transactions

* Using multiple databases

Result handles

Every command invocation on the asynchronous API creates a RedisFuture<T> that can be canceled,
awaited and subscribed (listener). A CompleteableFuture<T> or RedisFuture<T> is a pointer to the
result that is initially unknown since the computation of its value is yet incomplete. A
RedisFuture<T> provides operations for synchronization and chaining.

Example 6. First steps with CompletableFuture

CompletableFuture<String> future = new CompletableFuture<>();

n

System.out.println("Current state: " + future.isDone());

future.complete("my value");

System.out.println("Current state: " + future.isDone());
System.out.println("Got value: " + future.get());

The example prints the following lines:

13

Current state: false
Current state: true
Got value: my value

Attaching a listener to a future allows chaining. Promises can be used synonymous to futures, but
not every future is a promise. A promise guarantees a callback/notification and thus it has come to
its name.

A simple listener that gets called once the future completes:

Example 7. Using listeners with CompletableFuture

final CompletableFuture<String> future = new CompletableFuture<>();
future.thenRun(new Runnable() {

public void run() {
try {
System.out.println("Got value: " + future.get());
} catch (Exception e) {
e.printStackTrace();
}

}
b

System.out.println("Current state:
future.complete("my value");
System.out.println("Current state:

+ future.isDone());

+ future.isDone());

The value processing moves from the caller into a listener that is then called by whoever completes
the future. The example prints the following lines:

Current state: false
Got value: my value
Current state: true

The code from above requires exception handling since calls to the get() method can lead to
exceptions. Exceptions raised during the computation of the Future<T> are transported within an
ExecutionException. Another exception that may be thrown is the InterruptedException. This is
because calls to get() are blocking calls and the blocked thread can be interrupted at any time. Just
think about a system shutdown.

The CompletionStage<T> type allows since Java 8 a much more sophisticated handling of futures. A
CompletionStage<T> can consume, transform and build a chain of value processing. The code from
above can be rewritten in Java 8 in the following style:

14

Example 8. Using a Consumer future listener

CompletableFuture<String> future = new CompletableFuture<>();
future.thenAccept(new Consumer<String>() {

public void accept(String value) {
System.out.println("Got value: " + value);
}
1

System.out.println("Current state: " + future.isDone());

future.complete("my value");
System.out.println("Current state:

+ future.isDone());

The example prints the following lines:

Current state: false
Got value: my value
Current state: true

You can find the full reference for the CompletionStage<T> type in the Java 8 API documentation.

4.3.2. Creating futures using lettuce

lettuce futures can be used for initial and chaining operations. When using lettuce futures, you will
notice the non-blocking behavior. This is because all [/O and command processing are handled
asynchronously using the netty EventLoop. The lettuce RedisFuture<T> extends a CompletionStage<T>
so all methods of the base type are available.

lettuce exposes its futures on the Standalone, Sentinel, Publish/Subscribe and Cluster APIs.

Connecting to Redis is insanely simple:

RedisClient client = RedisClient.create("redis://localhost");
RedisAsyncCommands<String, String> commands = client.connect().async();

In the next step, obtaining a value from a key requires the GET operation:

RedisFuture<String> future = commands.get("key");

4.3.3. Consuming futures

The first thing you want to do when working with futures is to consume them. Consuming a futures
means obtaining the value. Here is an example that blocks the calling thread and prints the value:

15

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

Example 9. GET a key

RedisFuture<String> future = commands.get("key");
String value = future.get();
System.out.println(value);

Invocations to the get() method (pull-style) block the calling thread at least until the value is
computed but in the worst case indefinitely. Using timeouts is always a good idea to not exhaust
your threads.

Example 10. Blocking synchronization

try {
RedisFuture<String> future = commands.get("key");
String value = future.get(1, TimeUnit.MINUTES);
System.out.println(value);

} catch (Exception e) {
e.printStackTrace();

}

The example will wait at most 1 minute for the future to complete. If the timeout exceeds, a
TimeoutException is thrown to signal the timeout.

Futures can also be consumed in a push style, meaning when the RedisFuture<T> is completed, a
follow-up action is triggered:

Example 11. Using a Consumer listener with GET

RedisFuture<String> future = commands.get("key");
future.thenAccept(new Consumer<String>() {
public void accept(String value) {
System.out.println(value);

}
b

Alternatively, written in Java 8 lambdas:

16

Example 12. Using a Consumer lambda with GET

RedisFuture<String> future = commands.get("key");

future.thenAccept(System.out::println);

lettuce futures are completed on the netty EventLoop. Consuming and chaining futures on the
default thread is always a good idea except for one case: Blocking/long-running operations. As a
rule of thumb, never block the event loop. If you need to chain futures using blocking calls, use the
thenAcceptAsync()/thenRunAsync() methods to fork the processing to another thread. The Oasync()
methods need a threading infrastructure for execution, by default the ForkJoinPool.commonPool() is
used. The ForkJoinPool is statically constructed and does not grow with increasing load. Using
default Executors is almost always the better idea.

Example 13. Asynchronous listener notification

Executor sharedExecutor = ...
RedisFuture<String> future = commands.get("key");

future.thenAcceptAsync(new Consumer<String>() {

public void accept(String value) {
System.out.println(value);

}

}, sharedExecutor);

4.3.4. Synchronizing futures
A Kkey point when using futures is the synchronization. Futures are usually used to:

1. Trigger multiple invocations without the urge to wait for the predecessors (Batching)
2. Invoking a command without awaiting the result at all (Fire&Forget)

3. Invoking a command and perform other computing in the meantime (Decoupling)

4. Adding concurrency to certain computational efforts (Concurrency)

There are several ways how to wait or get notified in case a future completes. Certain
synchronization techniques apply to some motivations why you want to use futures.

Blocking synchronization

Blocking synchronization comes handy if you perform batching/add concurrency to certain parts of
your system. An example to batching can be setting/retrieving multiple values and awaiting the
results before a certain point within processing.

17

Example 14. Getting multiple keys asynchronously

List<RedisFuture<String>> futures = new ArraylList<RedisFuture<String>>();

for (int i =0; 1 < 10; i++) {
futures.add(commands.set("key-" + i, "value-" + 1));

LettuceFutures.awaitAl1(1, TimeUnit.MINUTES, futures.toArray(new RedisFuture
[futures.size()]));

The code from above does not wait until a certain command completes before it issues another one.
The synchronization is done after all commands are issued. The example code can easily be turned
into a Fire&Forget pattern by omitting the call to LettuceFutures.awaitAl1().

A single future execution can be also awaited, meaning an opt-in to wait for a certain time but
without raising an exception:

Example 15. Using RedisFuture.await to wait for a result

RedisFuture<String> future = commands.get("key");

if(!future.await(1, TimeUnit.MINUTES)) {
System.out.println("Could not complete within the timeout");

Calling await() is friendlier to call since it throws only an InterruptedException in case the blocked
thread is interrupted. You are already familiar with the get() method for synchronization, so we
will not bother you with this one.

At last, there is another way to synchronize futures in a blocking way. The major caveat is that you
will become responsible to handle thread interruptions. If you do not handle that aspect, you will
not be able to shut down your system properly if it is in a running state.

RedisFuture<String> future = commands.get("key");
while (!future.isDone()) {
// do something ...

While the isDone() method does not aim primarily for synchronization use, it might come handy to
perform other computational efforts while the command is executed.

Chaining synchronization

Futures can be synchronized/chained in a non-blocking style to improve thread utilization.

18

Chaining works very well in systems relying on event-driven characteristics. Future chaining builds
up a chain of one or more futures that are executed serially, and every chain member handles a
part in the computation. The CompletionStage<T> API offers various methods to chain and transform
futures. A simple transformation of the value can be done using the thenApply() method:

Example 16. Future chaining

future.thenApply(new Function<String, Integer>() {

public Integer apply(String value) {
return value.length();

}

}).thenAccept(new Consumer<Integer>() {

public void accept(Integer integer) {

System.out.println("Got value: " + integer);

}
D

Alternatively, written in Java 8 lambdas:

Example 17. Future chaining with lambdas

future.thenApply(String::length)
.thenAccept(integer -> System.out.println("Got value:

+ integer));

The thenApply() method accepts a function that transforms the value into another one. The final
thenAccept() method consumes the value for final processing.

You have already seen the thenRun() method from previous examples. The thenRun() method can be
used to handle future completions in case the data is not crucial to your flow:

future.thenRun(new Runnable() {

public void run() {
System.out.println("Finished the future.");

}
1

Keep in mind to execute the Runnable on a custom Executor if you are doing blocking calls within the
Runnable.

Another chaining method worth mentioning is the either-or chaining. A couple of Either()
methods are available on a CompletionStage<T>, see the Java 8 API docs for the full reference. The
either-or pattern consumes the value from the first future that is completed. A good example might

19

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

be two services returning the same data, for instance, a Master-Replica scenario, but you want to
return the data as fast as possible:

Example 18. Read from Master and Replica and continue with the first response

RedisStringAsyncCommands<String, String> master = masterClient.connect().async();
RedisStringAsyncCommands<String, String> replica = replicaClient.connect().async(

)

RedisFuture<String> future = master.get("key");
future.acceptEither(replica.get("key"), new Consumer<String>() {

public void accept(String value) {
System.out.println("Got value: " + value);

}
1

4.3.5. Error handling

Error handling is an indispensable component of every real world application and should to be
considered from the beginning on. Futures provide some mechanisms to deal with errors.

In general, you want to react in the following ways:

* Return a default value instead
* Use a backup future
* Retry the future
RedisFuture<T>s transport exceptions if any occurred. Calls to the get() method throw the occurred

exception wrapped within an ExecutionException (this is different to lettuce 3.x). You can find more
details within the Javadoc on CompletionStage.

The following code falls back to a default value after it runs to an exception by using the handle()
method:

20

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

Example 19. Future listener receiving result and error objects

future.handle(new BiFunction<String, Throwable, String>() {

public Integer apply(String value, Throwable throwable) {
if(throwable != null) {
return "default value";

}

return value;

}
}).thenAccept(new Consumer<String>() {

public void accept(String value) {
System.out.println("Got value:

+ value);

}
1}

More sophisticated code could decide on behalf of the throwable type that value to return, as the
shortcut example using the exceptionally() method:

Example 20. Future recovery with Exception handlers

future.exceptionally(new Function<Throwable, String>() {

public String apply(Throwable throwable) {
if (throwable instanceof IllegalStateException) {
return "default value";

}

return "other default value";
}
b

Retrying futures and recovery using futures is not part of the Java 8 CompleteableFuture<T>. See the
Reactive API for comfortable ways handling with exceptions.

4.3.6. Examples

21

Example 21. Basic operations

RedisAsyncCommands<String, String> async = client.connect().async();
RedisFuture<String> set = async.set("key", "value");
RedisFuture<String> get = async.get("key");

set.get() == "OK"
get.get() == "value"

Example 22. Waiting for a future with a timeout

RedisAsyncCommands<String, String> async = client.connect().async();
RedisFuture<String> set = async.set("key", "value");
RedisFuture<String> get = async.get("key");

set.await(1, SECONDS) == true

set.get() == "OK"
get.get(1, TimeUnit.MINUTES) == "value"

Example 23. Using a listener with RedisFuture
RedisStringAsyncCommands<String, String> async = client.connect().async();
RedisFuture<String> set = async.set("key", "value");
Runnable listener = new Runnable() {
public void run() {

ey

}
+

set.thenRun(listener);

4.4. Reactive API

This guide helps you to understand the Reactive Stream pattern and aims to give you a general
understanding of how to build reactive applications.

4.4.1. Motivation

Asynchronous and reactive methodologies allow you to utilize better system resources, instead of
wasting threads waiting for network or disk I/O. Threads can be fully utilized to perform other
work instead.

22

A broad range of technologies exists to facilitate this style of programming, ranging from the very
limited and less usable java.util.concurrent.Future to complete libraries and runtimes like Akka.
Project Reactor, has a very rich set of operators to compose asynchronous workflows, it has no
further dependencies to other frameworks and supports the very mature Reactive Streams model.

4.4.2. Understanding Reactive Streams

Reactive Streams is an initiative to provide a standard for asynchronous stream processing with
non-blocking back pressure. This encompasses efforts aimed at runtime environments (JVM and
JavaScript) as well as network protocols.

The scope of Reactive Streams is to find a minimal set of interfaces, methods, and protocols that will
describe the necessary operations and entities to achieve the goal—asynchronous streams of data
with non-blocking back pressure.

It is an interoperability standard between multiple reactive composition libraries that allow
interaction without the need of bridging between libraries in application code.

The integration of Reactive Streams is usually accompanied with the use of a composition library
that hides the complexity of bare Publisher<T> and Subscriber<T> types behind an easy-to-use APIL
Lettuce uses Project Reactor that exposes its publishers as Mono and Flux.

For more information about Reactive Streams see http://reactive-streams.org.

4.4.3. Understanding Publishers

Asynchronous processing decouples I/0 or computation from the thread that invoked the operation.
A handle to the result is given back, usually a java.util.concurrent.Future or similar, that returns
either a single object, a collection or an exception. Retrieving a result, that was fetched
asynchronously is usually not the end of processing one flow. Once data is obtained, further
requests can be issued, either always or conditionally. With Java 8 or the Promise pattern, linear
chaining of futures can be set up so that subsequent asynchronous requests are issued. Once
conditional processing is needed, the asynchronous flow has to be interrupted and synchronized.
While this approach is possible, it does not fully utilize the advantage of asynchronous processing.

In contrast to the preceding examples, Publisher<T> objects answer the multiplicity and
asynchronous questions in a different fashion: By inverting the Pull pattern into a Push pattern.

A Publisher is the asynchronous/push “dual” to the synchronous/pull Iterable

event Iterable (pull) Publisher (push)
retrieve data T next() onNext(T)

discover error throws Exception onError(Exception)
complete 'hasNext() onCompleted()

An Publisher<T> supports emission sequences of values or even infinite streams, not just the
emission of single scalar values (as Futures do). You will very much appreciate this fact once you
start to work on streams instead of single values. Project Reactor uses two types in its vocabulary:

23

http://projectreactor.io/
http://projectreactor.io/
http://reactive-streams.org

Mono and Flux that are both publishers.
A Mono can emit @ to 1 events while a Flux can emit @ to N events.

A Publisher<T> is not biased toward some particular source of concurrency or asynchronicity and
how the underlying code is executed - synchronous or asynchronous, running within a ThreadPool.
As a consumer of a Publisher<T>, you leave the actual implementation to the supplier, who can
change it later on without you having to adapt your code.

The last key point of a Publisher<T> is that the underlying processing is not started at the time the
Publisher<T>is obtained, rather its started at the moment an observer subscribes or signals demand
to the Publisher<T>. This is a crucial difference to a java.util.concurrent.Future, which is started
somewhere at the time it is created/obtained. So if no observer ever subscribes to the Publisher<T>,
nothing ever will happen.

4.4.4. A word on the lettuce Reactive API

All commands return a Flux<T>, Mono<T> or Mono<Void> to which a Subscriber can subscribe to. That
subscriber reacts to whatever item or sequence of items the Publisher<T> emits. This pattern
facilitates concurrent operations because it does not need to block while waiting for the
Publisher<T> to emit objects. Instead, it creates a sentry in the form of a Subscriber that stands
ready to react appropriately at whatever future time the Publisher<T> does so.

4.4.5. Consuming Publisher<T>

The first thing you want to do when working with publishers is to consume them. Consuming a
publisher means subscribing to it. Here is an example that subscribes and prints out all the items
emitted:

Flux.just("Ben", "Michael", "Mark").subscribe(new Subscriber<String>() {
public void onSubscribe(Subscription s) {
s.request(3);
}

public void onNext(String s) {
System.out.println("Hello

+s+ "l");

}

public void onError(Throwable t) {

}

public void onComplete() {
System.out.println("Completed");
}
Ik

The example prints the following lines:

24

Hello Ben
Hello Michael
Hello Mark
Completed

You can see that the Subscriber (or Observer) gets notified of every event and also receives the
completed event. A Publisher<T> emits items until either an exception is raised or the Publisher<T>
finishes the emission calling onCompleted. No further elements are emitted after that time.

A call to the subscribe registers a Subscription that allows to cancel and, therefore, do not receive
further events. Publishers can interoperate with the un-subscription and free resources once a
subscriber unsubscribed from the Publisher<T>.

Implementing a Subscriber<T> requires implementing numerous methods, so lets rewrite the code
to a simpler form:

Flux.just("Ben", "Michael", "Mark").doOnNext(new Consumer<String>() {
public void accept(String s) {
System.out.println("Hello

+s+ "1");
}
}).doOnComplete(new Runnable() {
public void run() {
System.out.println("Completed");

}
}).subscribe();

alternatively, even simpler by using Java 8 Lambdas:

Flux.just("Ben", "Michael", "Mark")
.doOnNext(s -> System.out.println("Hello " + s + "!"))
.doOnComplete(() -> System.out.println("Completed"))
.subscribe();

You can control the elements that are processed by your Subscriber using operators. The take()
operator limits the number of emitted items if you are interested in the first N elements only.

Flux.just("Ben", "Michael", "Mark") //
.doOnNext(s -> System.out.println("Hello " + s + "!"))
.doOnComplete(() -> System.out.println("Completed"))
.take(2)

.subscribe();

The example prints the following lines:

25

Hello Ben
Hello Michael
Completed

Note that the take operator implicitly cancels its subscription from the Publisher<T> once the
expected count of elements was emitted.

A subscription to a Publisher<T> can be done either by another Flux or a Subscriber. Unless you are
implementing a custom Publisher, always use Subscriber. The used subscriber Consumer from the
example above does not handle Exceptions so once an Exception is thrown you will see a stack trace
like this:

Exception in thread "main" reactor.core.Exceptions$BubblingException:
java.lang.RuntimeException: Example exception

at reactor.core.Exceptions.bubble(Exceptions.java:96)

at reactor.core.publisher.Operators.onErrorDropped(Operators.java:296)

at reactor.core.publisher.LambdaSubscriber.onError(LambdaSubscriber.java:117)

Caused by: java.lang.RuntimeException: Example exception
at demos.lambda$example3Lambda$4(demos.java:87)
at
reactor.core.publisher.FluxPeekFuseable$PeekFuseableSubscriber.onNext(FluxPeekFuseable
.java:157)
. 23 more

It is always recommended to implement an error handler right from the beginning. At a certain
point, things can and will go wrong.

A fully implemented subscriber declares the onCompleted and onError methods allowing you to react
to these events:

26

Flux.just("Ben", "Michael", "Mark").subscribe(new Subscriber<String>() {
public void onSubscribe(Subscription s) {
s.request(3);

}

public void onNext(String s) {
System.out.println("Hello

n

+ S + ll!ll);

}

public void onError(Throwable t) {
System.out.println("onError: " + e);

}

public void onComplete() {
System.out.println("Completed");
}
K

4.4.6. From push to pull

The examples from above illustrated how publishers can be set up in a not-opinionated style about
blocking or non-blocking execution. A Flux<T> can be converted explicitly into an Iterable<T> or
synchronized with block(). Avoid calling block() in your code as you start expressing the nature of
execution inside your code. Calling block() removes all non-blocking advantages of the reactive
chain to your application.

String last = Flux.just("Ben", "Michael”, "Mark").last().block();
System.out.println(last);

The example prints the following line:
Mark

A blocking call can be used to synchronize the publisher chain and find back a way into the plain
and well-known Pull pattern.

List<String> list = Flux.just("Ben", "Michael", "Mark").collectList().block();
System.out.println(list);

The tolist operator collects all emitted elements and passes the list through the
BlockingPublisher<T>.

The example prints the following line:

27

[Ben, Michael, Mark]

4.4.7. Creating Flux and Mono using lettuce

There are many ways to establish publishers. You have already seen just(), take() and
collectlList(). Refer to the Project Reactor documentation for many more methods that you can use
to create Flux and Mono.

lettuce publishers can be used for initial and chaining operations. When using lettuce publishers,
you will notice the non-blocking behavior. This is because all /O and command processing are
handled asynchronously using the netty EventLoop.

Connecting to Redis is insanely simple:

RedisClient client = RedisClient.create("redis://localhost");
RedisStringReactiveCommands<String, String> commands = client.connect().reactive();

In the next step, obtaining a value from a key requires the GET operation:

commands.get("key").subscribe(new Consumer<String>() {

public void accept(String value) {
System.out.println(value);
}
});

Alternatively, written in Java 8 lambdas:

commands
.get("key")
.subscribe(value -> System.out.println(value));

The execution is handled asynchronously, and the invoking Thread can be used to processed in
processing while the operation is completed on the Netty EventLoop threads. Due to its decoupled
nature, the calling method can be left before the execution of the Publisher<T> is finished.

lettuce publishers can be used within the context of chaining to load multiple keys asynchronously:

Flux.just("Ben", "Michael", "Mark").
flatMap(key -> commands.get(key)).
subscribe(value -> System.out.println("Got value:

+ value));

28

http://projectreactor.io/docs/

4.4.8. Hot and Cold Publishers
There is a distinction between Publishers that was not covered yet:

* A cold Publishers waits for a subscription until it emits values and does this freshly for every
subscriber.

* A hot Publishers begins emitting values upfront and presents them to every subscriber
subsequently.

All Publishers returned from the Redis Standalone, Redis Cluster, and Redis Sentinel API are cold,
meaning that no I/O happens until they are subscribed to. As such a subscriber is guaranteed to see
the whole sequence from the beginning. So just creating a Publisher will not cause any network I/O
thus creating and discarding Publishers is cheap. Publishers created for a Publish/Subscribe emit
PatternMessages and ChannelMessages once they are subscribed to. Publishers guarantee however to
emit all items from the beginning until their end. While this is true for Publish/Subscribe
publishers, the nature of subscribing to a Channel/Pattern allows missed messages due to its
subscription nature and less to the Hot/Cold distinction of publishers.

4.4.9. Transforming publishers

Publishers can transform the emitted values in various ways. One of the most basic
transformations is flatMap() which you have seen from the examples above that converts the
incoming value into a different one. Another one is map(). The difference between map() and
flatMap() is that flatMap() allows you to do those transformations with Publisher<T> calls.

Flux.just("Ben", "Michael", "Mark")
.flatMap(commands: :get)
.flatMap(value -> commands.rpush("result", value))
.subscribe();

The first flatMap() function is used to retrieve a value and the second flatMap() function appends
the value to a Redis list named result. The flatMap() function returns a Publisher whereas the
normal map just returns <T>. You will use flatMap() a lot when dealing with flows like this, you’ll
become good friends.

An aggregation of values can be achieved using the reduce() transformation. It applies a function to
each value emitted by a Publisher<T>, sequentially and emits each successive value. We can use it to
aggregate values, to count the number of elements in multiple Redis sets:

Flux.just("Ben", "Michael", "Mark")

.flatMap(commands: :scard)

.reduce((sum, current) -> sum + current)

.subscribe(result -> System.out.println("Number of elements in sets: " +
result));

The aggregation function of reduce() is applied on each emitted value, so three times in the
example above. If you want to get the last value, which denotes the final result containing the

29

number of elements in all Redis sets, apply the last() transformation:

Flux.just("Ben", "Michael", "Mark")

.flatMap(commands::scard)

.reduce((sum, current) -> sum + current)

.last()

.subscribe(result -> System.out.println("Number of elements in sets: " +
result));

Now let’s take a look at grouping emitted items. The following example emits three items and
groups them by the beginning character.

Flux.just("Ben", "Michael", "Mark")
.groupBy(key -> key.substring(@, 1))
.subscribe(
groupedFlux -> {
groupedFlux.collectList().subscribe(list -> {
System.out.println("First character: "
elements: " + list);

b

+ groupedFlux.key() + ",

}
)

The example prints the following lines:

First character: B, elements: [Ben]
First character: M, elements: [Michael, Mark]

4.4.10. Absent values

The presence and absence of values is an essential part of reactive programming. Traditional
approaches consider null as an absence of a particular value. With Java 8, Optional<T> was
introduced to encapsulate nullability. Reactive Streams prohibits the use of null values.

In the scope of Redis, an absent value is an empty list, a non-existent key or any other empty data
structure. Reactive programming discourages the use of null as value. The reactive answer to
absent values is just not emitting any value that is possible due the 0 to N nature of Publisher<T>.

Suppose we have the keys Ben and Michael set each to the value value. We query those and another,
absent key with the following code:

Flux.just("Ben", "Michael", "Mark")
.flatMap(commands: :get)
.doOnNext(value -> System.out.println(value))
.subscribe();

30

The example prints the following lines:

value
value

The output is just two values. The GET to the absent key Mark does not emit a value.

The reactive API provides operators to work with empty results when you require a value. You can
use one of the following operators:

defaultIfEmpty: Emit a default value if the Publisher<T> did not emit any value at all

switchIfEmpty: Switch to a fallback Publisher<T> to emit values

Flux.hasElements/Flux.hasElement: Emit a Mono<Boolean> that contains a flag whether the original
Publisher<T> is empty

* next/last/elementAt: Positional operators to retrieve the first/last/Nth element or emit a default
value

4.4.11. Filtering items

The values emitted by a Publisher<T> can be filtered in case you need only specific results. Filtering
does not change the emitted values itself. Filters affect how many items and at which point (and if
at all) they are emitted.

Flux.just("Ben", "Michael", "Mark")
.filter(s -> s.startsWith("M"))
.flatMap(commands::get)
.subscribe(value -> System.out.println("Got value:

n

+ value));

The code will fetch only the keys Michael and Mark but not Ben. The filter criteria are whether the key
starts with a M.

You already met the last() filter to retrieve the last value:

Flux.just("Ben", "Michael", "Mark")
.last()

.subscribe(value -> System.out.println("Got value: " + value));
the extended variant of last() allows you to take the last N values:
Flux.just("Ben", "Michael", "Mark")
.takelast(3)
.subscribe(value -> System.out.println("Got value: " + value));

The example from above takes the last 2 values.

31

The opposite to next() is the first() filter that is used to retrieve the next value:

Flux.just("Ben", "Michael", "Mark")
.next()
.subscribe(value -> System.out.println("Got value:

+ value));

4.4.12. Error handling

Error handling is an indispensable component of every real world application and should to be
considered from the beginning on. Project Reactor provides several mechanisms to deal with
errors.

In general, you want to react in the following ways:

e Return a default value instead
* Use a backup publisher

* Retry the Publisher (immediately or with delay)

The following code falls back to a default value after it throws an exception at the first emitted
item:

Flux.just("Ben", "Michael", "Mark")
.doOnNext(value -> {
throw new I1legalStateException("Takes way too long");

)

.onErrorReturn("Default value")
.subscribe();

You can use a backup Publisher<T> which will be called if the first one fails.

Flux.just("Ben", "Michael", "Mark")
.doOnNext(value -> {
throw new I1legalStateException("Takes way too long");

1))
.switchOnError(commands.get("Default Key"))

.subscribe();

It is possible to retry the publisher by re-subscribing. Re-subscribing can be done as soon as
possible, or with a wait interval, which is preferred when external resources are involved.

Flux.just("Ben", "Michael", "Mark")
.flatMap(commands: :get)
.retry()

.subscribe();

32

Use the following code if you want to retry with backoff:

Flux.just("Ben", "Michael", "Mark")
.doOnNext(v -> {
if (new Random().nextInt(10) + 1 == 5) {
throw new RuntimeException("Boo!");

}
b
.doOnSubscribe(subscription ->
{
System.out.println(subscription);
1))

.retryWhen(throwableFlux -> Flux.range(1, 5)
.flatMap(i -> {
System.out.println(i);
return Flux.just(i)
.delay(Duration.of(i, ChronoUnit.SECONDS));

1)
.blockLast();

The attempts get passed into the retryWhen() method delayed with the number of seconds to wait.
The delay method is used to complete once its timer is done.

4.4.13. Schedulers and threads

Schedulers in Project Reactor are used to instruct multi-threading. Some operators have variants
that take a Scheduler as a parameter. These instruct the operator to do some or all of its work on a
particular Scheduler.

Project Reactor ships with a set of preconfigured Schedulers, which are all accessible through the
Schedulers class:

* Schedulers.parallel(): Executes the computational work such as event-loops and callback
processing.
» Schedulers.immediate(): Executes the work immediately in the current thread

» Schedulers.elastic(): Executes the I/O-bound work such as asynchronous performance of
blocking I/0O, this scheduler is backed by a thread-pool that will grow as needed

* Schedulers.newSingle(): Executes the work on a new thread
* Schedulers.fromExecutor(): Create a scheduler from a java.util.concurrent.Executor

e Schedulers.timer(): Create or reuse a hash-wheel based TimedScheduler with a resolution of
50m:s.

Do not use the computational scheduler for I/O.
Publishers can be executed by a scheduler in the following different ways:

* Using an operator that makes use of a scheduler

33

» Explicitly by passing the Scheduler to such an operator
* By using subscribeOn(Scheduler)
* By using publishOn(Scheduler)

Operators like buffer, replay, skip, delay, parallel, and so forth use a Scheduler by default if not
instructed otherwise.

All of the listed operators allow you to pass in a custom scheduler if needed. Sticking most of the
time with the defaults is a good idea.

If you want the subscribe chain to be executed on a specific scheduler, you use the subscribeOn()
operator. The code is executed on the main thread without a scheduler set:

Flux.just("Ben", "Michael", "Mark").flatMap(key -> {

System.out.println("Map 1: " + key + " (" + Thread.currentThread().
getName() + ")");

return Flux.just(key);

}

).flatMap(value -> {

System.out.println("Map 2:
.getName() + ")");

return Flux.just(value);

+ value + " (" + Thread.currentThread()

}

).subscribe();

The example prints the following lines:

Map 1: Ben (main)
Map 2: Ben (main)
Map 1: Michael (main)
Map 2: Michael (main)
Map 1: Mark (main)
Map 2: Mark (main)

This example shows the subscribeOn() method added to the flow (it does not matter where you add
it):

34

Flux.just("Ben", "Michael", "Mark").flatMap(key -> {

System.out.println("Map 1: " + key + " (" + Thread.currentThread().
getName() + ")");

return Flux.just(key);

}

).flatMap(value -> {

System.out.println("Map 2:
.getName() + ")");

return Flux.just(value);

+ value + " (" + Thread.currentThread()

}
).subscribeOn(Schedulers.parallel()).subscribe();

The output of the example shows the effect of subscribeOn(). You can see that the Publisher is
executed on the same thread, but on the computation thread pool:

Map 1: Ben (parallel-1)
Map 2: Ben (parallel-1)
Map 1: Michael (parallel-1)
Map 2: Michael (parallel-1)
Map 1: Mark (parallel-1)
Map 2: Mark (parallel-1)

If you apply the same code to lettuce, you will notice a difference in the threads on which the
second flatMap() is executed:

Flux.just("Ben", "Michael", "Mark").flatMap(key -> {

System.out.println("Map 1: " + key + " (" + Thread.currentThread().getName() + ")
");

return commands.set(key, key);
}).flatMap(value -> {

System.out.println("Map 2:
"))

return Flux.just(value);
}).subscribeOn(Schedulers.parallel()).subscribe();

"+ value + " (" + Thread.currentThread().getName() +

The example prints the following lines:

Map 1: Ben (parallel-1)

Map 1: Michael (parallel-1)

Map 1: Mark (parallel-1)

Map 2: OK (lettuce-nioEventLoop-3-1)
Map 2: OK (lettuce-nioEventLoop-3-1)
Map 2: OK (lettuce-nioEventlLoop-3-1)

Two things differ from the standalone examples:

35

1. The values are set rather concurrently than sequentially

2. The second flatMap() transformation prints the netty EventLoop thread name

This is because lettuce publishers are executed and completed on the netty EventLoop threads by
default.

publishOn instructs an Publisher to call its observer’s onNext, onError, and onCompleted methods on a
particular Scheduler. Here, the order matters:

Flux.just("Ben", "Michael", "Mark").flatMap(key -> {

System.out.println("Map 1: " + key + " (" + Thread.currentThread().getName() + ")
ol

return commands.set(key, key);
}).publishOn(Schedulers.parallel()).flatMap(value -> {

System.out.println("Map 2: " + value + " (" + Thread.currentThread().getName() +
Il)ll);

return Flux.just(value);
}).subscribe();

Everything before the publishOn() call is executed in main, everything below in the scheduler:

Map 1: Ben (main)
Map 1: Michael (main)
Map 1: Mark (main)
Map 2: OK (parallel-1)
Map 2: OK (parallel-1)
Map 2: OK (parallel-1)

Schedulers allow direct scheduling of operations. Refer to the Project Reactor documentation for
further information.

4.4.14. Redis Transactions

lettuce provides a convenient way to use Redis Transactions in a reactive way. Commands that
should be executed within a transaction can be executed after the MULTI command was executed.
Functional chaining allows to execute commands within a closure, and each command receives its
appropriate response. A cumulative response is also returned with TransactionResult in response to
EXEC.

See Transactions for further details.

Other examples

Blocking example

36

https://projectreactor.io/core/docs/api/reactor/core/scheduler/Schedulers.html
Transactions#transactions-using-the-reactive-api

RedisStringReactiveCommands<String, String> reactive
Mono<String> set = reactive.set("key", "value");
set.block();

client.connect().reactive();

Non-blocking example

RedisStringReactiveCommands<String, String> reactive
Mono<String> set = reactive.set("key", "value");
set.subscribe();

client.connect().reactive();

Functional chaining

RedisStringReactiveCommands<String, String> reactive = client.connect().reactive();
Flux.just("Ben", "Michael", "Mark")

.flatMap(key -> commands.sadd("seen", key))

.flatMap(value -> commands.randomkey())

.flatMap(commands: :type)

.doOnNext (System.out::println).subscribe();

Redis Transaction

RedisReactiveCommands<String, String> reactive = client.connect().reactive();

reactive.multi().doOnSuccess(s -> {
reactive.set("key", "1").doOnNext(s1 -> System.out.println(s1)).subscribe();
reactive.incr("key").doOnNext(s1 -> System.out.println(s1)).subscribe();
}).flatMap(s -> reactive.exec())
.doOnNext(transactionResults ->
System.out.println(transactionResults.wasRolledBack()))
.subscribe();

4.5. Publish/Subscribe

Lettuce provides support for Publish/Subscribe on Redis Standalone and Redis Cluster connections.
The connection is notified on message/subscribed/unsubscribed events after subscribing to
channels or patterns. Synchronous, asynchronous and reactive API’s are provided to interact with
Redis Publish/Subscribe features.

4.5.1. Subscribing

A connection can notify multiple listeners that implement RedisPubSubListener (Lettuce provides a
RedisPubSubAdapter for convenience). All listener registrations are Lkept within the
StatefulRedisPubSubConnection/StatefulRedisClusterConnection.

37

Example 24. Synchronous subscription

StatefulRedisPubSubConnection<String, String> connection = client.connectPubSub()
connection.addListener(new RedisPubSubListener<String, String>() { ... })

RedisPubSubCommands<String, String> sync = connection.sync();
sync.subscribe("channel");

// application flow continues

Example 25. Asynchronous subscription

StatefulRedisPubSubConnection<String, String> connection = client.connectPubSub()
connection.addListener (new RedisPubSubListener<String, String>() { ... })

RedisPubSubAsyncCommands<String, String> async = connection.async();
RedisFuture<Void> future = async.subscribe("channel");

// application flow continues

4.5.2. Reactive API

The reactive API provides hot Observables to listen on ChannelMessages and PatternMessages. The
Observables receive all inbound messages. You can do filtering using the observable chain if you
need to filter out the interesting ones, The Observable stops triggering events when the subscriber
unsubscribes from it.

Example 26. Reactive subscription

StatefulRedisPubSubConnection<String, String> connection = client.connectPubSub()

RedisPubSubReactiveCommands<String, String> reactive = connection.reactive();
reactive.subscribe("channel").subscribe();

reactive.observeChannels().doOnNext(patternMessage -> {...}).subscribe()

// application flow continues

4.5.3. Redis Cluster

Redis Cluster support Publish/Subscribe but requires some attention in general. User-space Pub/Sub
messages (Calling PUBLISH) are broadcasted across the whole cluster regardless of subscriptions to
particular channels/patterns. This behavior allows connecting to an arbitrary cluster node and

38

registering a subscription. The client isn’t required to connect to the node where messages were
published.

A cluster-aware Pub/Sub connection is provided by RedisClusterClient.connectPubSub() allowing to
listen for cluster reconfiguration and reconnect if the topology changes.

Example 27. Redis Cluster Publish/Subscribe

StatefulRedisClusterPubSubConnection<String, String> connection = clusterClient
.connectPubSub()
connection.addListener(new RedisPubSublListener<String, String>() { ... })

RedisPubSubCommands<String, String> sync = connection.sync();
sync.subscribe("channel");

Redis Cluster also makes a distinction between user-space and key-space messages. Key-space
notifications (Pub/Sub messages for key-activity) stay node-local and are not broadcasted across the
Redis Cluster. A notification about, e.g. an expiring key, stays local to the node on which the key
expired.

Clients that are interested in keyspace notifications must subscribe to the appropriate node (or
nodes) to receive these notifications. You can either use RedisClient.connectPubSub() to establish
Pub/Sub connections to the individual nodes or use RedisClusterClient's message propagation and
NodeSelection API to get a managed set of connections.

Example 28. Redis Cluster Publish/Subscribe with node message propagation

StatefulRedisClusterPubSubConnection<String, String> connection = clusterClient
.connectPubSub()

connection.addListener (new RedisClusterPubSublListener<String, String>() { ... })
connection.setNodeMessagePropagation(true);

RedisPubSubCommands<String, String> sync = connection.sync();
sync.masters().commands().subscribe("__keyspace@d__:*");

There are two things to pay special attention to:

1. Replication: Keys replicated to replica nodes, especially considering expiry, generate keyspace
events on all nodes holding the key. If a key expires and it is replicated, it will expire on the
master and all replicas. Each Redis server will emit keyspace events. Subscribing to non-master
nodes, therefore, will let your application see multiple events of the same type for the same key
because of Redis distributed nature.

2. Topology Changes: Subscriptions are issued either by using the NodeSelection API or by calling
subscribe(0) on the individual cluster node connections. Subscription registrations are not
propagated to new nodes that are added on a topology change.

39

4.6. Transactions/Multi

Transactions allow the execution of a group of commands in a single step. Transactions can be
controlled using WATCH, UNWATCH, EXEC, MULTI and DISCARD commands. Synchronous, asynchronous,
reactive and cluster API’s allow the use of transactions.

Redis responds to commands invoked during a transaction with a with QUEUED response. The
response related to the execution of the command is received at the moment the EXEC command is
processed, and the transaction is executed. The particular APIs behave in different ways:

* Synchronous: Invocations to the commands return null while they are invoked within a
transaction. The MULTI command carries the response of the particular commands.

* Asynchronous: The futures receive their response at the moment the EXEC command is
processed. This happens while the EXEC response is received.

* Reactive: An Obvervable<T> triggers onNext/onCompleted at the moment the EXEC command is
processed. This happens while the EXEC response is received.

As soon as you’re within a transaction, you won’t receive any responses on triggering the
commands

redis.multi() == "0K"
redis.set(key, value) == null
redis.exec() == List("0K")

You’ll receive the transactional response when calling exec() on the end of your transaction.

redis.multi() == "0K"
redis.set(key1, value) == null
redis.set(key2, value) == null
redis.exec() == List("0K", "OK")

4.6.1. Transactions using the asynchronous API

Asynchronous use of Redis transactions is very similar to non-transactional use. The asynchronous
API returns RedisFuture instances that eventually complete and they are handles to a future result.
Regular commands complete as soon as Redis sends a response. Transactional commands complete
as soon as the EXEC result is received.

Each command is completed individually with its own result so users of RedisFuture will see no
difference between transactional and non-transactional RedisFuture completion. That said,
transactional command results are available twice: Once via RedisFuture of the command and once
through List<Object> (TransactionResult since Lettuce 5) of the EXEC command future.

40

RedisAsyncCommands<String, String> async = client.connect().async();
RedisFuture<String> multi = async.multi();

RedisFuture<String> set = async.set("key", "value");
RedisFuture<List<Object>> exec = async.exec();

List<Object> objects = exec.get();
String setResult = set.get();

objects.get(0) == setResult

4.6.2. Transactions using the reactive API

The reactive API can be used to execute multiple commands in a single step. The nature of the
reactive API encourages nesting of commands. It is essential to understand the time at which an
Observable<T> emits a value when working with transactions. Redis responds with QUEUED to
commands invoked during a transaction. The response related to the execution of the command is
received at the moment the EXEC command is processed, and the transaction is executed.
Subsequent calls in the processing chain are executed after the transactional end. The following
code starts a transaction, executes two commands within the transaction and finally executes the
transaction.

RedisReactiveCommands<String, String> reactive = client.connect().reactive();
reactive.multi().subscribe(multiResponse -> {

reactive.set("key", "1").subscribe();

reactive.incr("key").subscribe();

reactive.exec().subscribe();

1}

4.6.3. Transactions on clustered connections

Clustered connections perform a routing by default. This means, that you can’t be really sure, on
which host your command is executed. So if you are working in a clustered environment, use
rather a regular connection to your node, since then you’ll bound to that node knowing which hash
slots are handled by it.

4.6.4. Examples

Multi with executing multiple commands

41

redis.multi();
redis.set("one", "1");
redis.set("two", "2");
redis.mget("one", "two");
redis.llen(key);

redis.exec(); // result: list("OK", "OK", Llist("1", "2"), OL)

Mult executing multiple asynchronous commands

redis.multi();

RedisFuture<String> set1 = redis.set("one", "1");
RedisFuture<String> set2 = redis.set("two", "2");
RedisFuture<String> mget = redis.mget("one", "two");

RedisFuture<Long> 1len = mgetredis.llen(key);

set1.thenAccept(value -> 0); // 0K
set2.thenAccept(value -> 0); // 0K

RedisFuture<List<Object>> exec = redis.exec(); // result: list("OK", "OK", Tist("1",
”2"), @L)

mget.get(); // List("1", "2")
1len.thenAccept(value -> 10); // 0L

Using WATCH

redis.watch(key);

RedisConnection<String, String> redis2 = client.connect();
redis2.set(key, value + "X");
redis2.close();

redis.multi();

redis.append(key, "foo");
redis.exec()); // result is a empty list because of the changed key

42

Chapter 5. High-Availability and Sharding

5.1. Master/Replica

Redis can increase availability and read throughput by using replication. Lettuce provides
dedicated Master/Replica support since 4.2 for topologies and ReadFrom-Settings.

Redis Master/Replica can be run standalone or together with Redis Sentinel, which provides
automated failover and master promotion. Failover and master promotion is supported in Lettuce
already since version 3.1 for master connections.

Connections can be obtained from the MasterSlave connection provider by supplying the client,
Codec, and one or multiple RedisURISs.

5.1.1. Redis Sentinel

Master/Replica using Redis Sentinel uses Redis Sentinel as registry and notification source for
topology events. Details about the master and its replicas are obtained from Redis Sentinel. Lettuce
subscribes to Redis Sentinel events for notifications to all supplied Sentinels.

5.1.2. Standalone Master/Replica

Running a Standalone Master/Replica setup required one seed address to establish a Redis
connection. Providing one RedisURI will discover other nodes which belong to the Master/Replica
setup and use the discovered addresses for connections. The initial URI can point either to a master
or a replica node.

5.1.3. Static Master/Replica with predefined node addresses

In some cases, topology discovery shouldn’t be enabled, or the discovered Redis addresses are not
suited for connections. AWS ElastiCache falls into this category. Lettuce allows to specify one or
more Redis addresses as List and predefine the node topology. Master/Replica URIs will be treated
in this case as static topology, and no additional hosts are discovered in such case. Redis Standalone
Master/Replica will discover the roles of the supplied RedisURIs and issue commands to the
appropriate node.

5.1.4. Topology discovery

Master-Replica topologies are either static or semi-static. Redis Standalone instances with attached
replicas provide no failover/HA mechanism. Redis Sentinel managed instances are controlled by
Redis Sentinel and allow failover (which include master promotion). The MasterSlave API supports
both mechanisms. The topology is provided by a TopologyProvider:

* MasterSlaveTopologyProvider: Dynamic topology lookup using the INFO REPLICATION output.
Replicas are listed as replicaN=... entries. The initial connection can either point to a master or a
replica, and the topology provider will discover nodes. The connection needs to be re-
established outside of Lettuce in a case of a Master/Replica failover or topology changes.

43

» StaticMasterSlaveTopologyProvider: Topology is defined by the list of URIs and the ROLE output.
MasterSlave uses only the supplied nodes and won’t discover additional nodes in the setup. The
connection needs to be re-established outside of Lettuce in case of a Master/Replica failover or
topology changes.

* SentinelTopologyProvider: Dynamic topology lookup using the Redis Sentinel API. In particular,
SENTINEL MASTER and SENTINEL REPLICAS output. Master/Replica failover is handled by Lettuce.

5.1.5. Topology Updates

» Standalone Master/Replica: Performs a one-time topology lookup which remains static
afterward

* Redis Sentinel: Subscribes to all Sentinels and listens for Pub/Sub messages to trigger topology
refreshing

Transactions

Since version 5.1, transactions and commands during a transaction are routed to the master node
to ensure atomic transaction execution on a single node. Transactions can contain read- and write-
operations so the driver cannot decide upfront which node can be used to run the actual
transaction.

Examples

Example 29. Redis Standalone Master/Replica

RedisClient redisClient = RedisClient.create();
StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave
.connect(redisClient, new Utf8StringCodec(),

RedisURI.create("redis://localhost"));
connection.setReadFrom(ReadFrom.MASTER_PREFERRED);
System.out.println("Connected to Redis");

connection.close();
redisClient.shutdown();

44

Example 30. Redis Sentinel

RedisClient redisClient = RedisClient.create();

StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave
.connect(redisClient, new Utf8StringCodec(),

RedisURI.create("redis-
sentinel://localhost:26379,1ocalhost:26380/0#mymaster"));
connection.setReadFrom(ReadFrom.MASTER PREFERRED);

System.out.println("Connected to Redis");

connection.close();
redisClient.shutdown();

Example 31. AWS ElastiCache Cluster

RedisClient redisClient = RedisClient.create();

List<RedisURI> nodes = Arrays.asList(RedisURI.create("redis://host1"),
RedisURI.create("redis://host2"),
RedisURI.create("redis://host3"));

StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave
.connect(redisClient, new Utf8StringCodec(), nodes);
connection.setReadFrom(ReadFrom.MASTER_PREFERRED);

System.out.println("Connected to Redis");

connection.close();
redisClient.shutdown();

5.2. Redis Sentinel

When using lettuce, you can interact with Redis Sentinel and Redis Sentinel-managed nodes in
multiple ways:

1. Direct connection to Redis Sentinel, for issuing Redis Sentinel commands
2. Using Redis Sentinel to connect to a master

3. Using Redis Sentinel to connect to masters and replicas through the [master-slave].

In both cases, you need to supply a RedisURI since the Redis Sentinel integration supports multiple
Sentinel hosts to provide high availability.

Please note: Redis Sentinel (lettuce 3.x) integration provides only asynchronous connections and no

45

#direct-connection-redis-sentinel-nodes

connection pooling.

5.2.1. Direct connection Redis Sentinel nodes

Lettuce exposes an API to interact with Redis Sentinel nodes directly. This is useful for performing
administrative tasks using lettuce. You can monitor new masters, query master addresses, replicas
and much more. A connection to a Redis Sentinel node is established by
RedisClient.connectSentinel(). Use a Publish/Subscribe connection to subscribe to Sentinel events.

5.2.2. Redis discovery using Redis Sentinel

One or more Redis Sentinels can monitor Redis instances . These Redis instances are usually
operated together with a replica of the Redis instance. Once the master goes down, the replica is
promoted to a master. Once a master instance is not reachable anymore, the failover process is
started by the Redis Sentinels. Usually, the client connection is terminated. The disconnect can
result in any of the following options:

1. The master comes back: The connection is restored to the Redis instance

2. A replica is promoted to a master: lettuce performs an address lookup using the masterId. As
soon as the Redis Sentinel provides an address the connection is restored to the new Redis
instance

Read more at http://redis.io/topics/sentinel

5.2.3. Examples

Example 32. Redis Sentinel node connection

RedisURI redisUri = RedisURI.create("redis://sentinelhost1:26379");
RedisClient client = new RedisClient(redisUri);

RedisSentinelAsyncConnection<String, String> connection = client
.connectSentinelAsync();

Map<String, String> map = connection.master("mymaster").get();

Example 33. Redis master discovery

RedisURI redisUri = RedisURI.Builder.sentinel("sentinelhost1", "mymaster")
.withSentinel("sentinelhost2").build();
RedisClient client = RedisClient.create(redisUri);

RedisConnection<String, String> connection = client.connect();

46

Pub-Sub-(4.0)
http://redis.io/topics/sentinel

Every time you connect to a Redis instance using Redis Sentinel, the Redis master

o is looked up using a new connection to a Redis Sentinel. This can be time-
consuming, especially when multiple Redis Sentinels are used and one or more of
them are not reachable.

5.3. Redis Cluster

Lettuce supports Redis Cluster with:

» Support of all CLUSTER commands

* Command routing based on the hash slot of the commands' key

* High-level abstraction for selected cluster commands

* Execution of commands on multiple cluster nodes

* MOVED and ASK redirection handling

* Obtaining direct connections to cluster nodes by slot and host/port (since 3.3)
» SSL and authentication (since 4.2)

* Periodic and adaptive cluster topology updates

e Publish/Subscribe

Connecting to a Redis Cluster requires one or more initial seed nodes. The full cluster topology view
(partitions) is obtained on the first connection so you’re not required to specify all cluster nodes.
Specifying multiple seed nodes helps to improve resiliency as lettuce is able to connect the cluster
even if a seed node is not available. Lettuce holds multiple connections, which are opened on
demand. You are free to operate on these connections.

Connections can be bound to specific hosts or nodelds. Connections bound to a nodeld will always
stick to the nodeld, even if the nodeld is handled by a different host. Requests to unknown nodeld’s
or host/ports that are not part of the cluster are rejected. Do not close the connections. Otherwise,
unpredictable behavior will occur. Keep also in mind that the node connections are used by the
cluster connection itself to perform cluster operations: If you block one connection all other users
of the cluster connection might be affected.

5.3.1. Command routing

The concept of Redis Cluster bases on sharding. Every master node within the cluster handles one
or more slots. Slots are the unit of sharding and calculated from the commands' key using CRC16 MOD
16384. Hash slots can also be specified using hash tags such as {user:1000}. foo.

Every request, which incorporates at least one key is routed based on its hash slot to the
corresponding node. Commands without a key are executed on the default connection that points
most likely to the first provided RedisURI. The same rule applies to commands operating on multiple
keys but with the limitation that all keys have to be in the same slot. Commands operating on
multiple slots will be terminated with a CROSSSLOT error.

47

http://redis.io/topics/cluster-tutorial
http://redis.io/topics/cluster-tutorial#redis-cluster-data-sharding

5.3.2. Cross-slot command execution and cluster-wide execution for
selected commands

Regular Redis Cluster commands are limited to single-slot keys operation - either single key
commands or multi-key commands that share the same hash slot.

The cross slot limitation can be mitigated by using the advanced cluster API for a set of selected
multi-key commands. Commands that operate on keys with different slots are decomposed into
multiple commands. The single commands are fired in a fork/join fashion. The commands are
issued concurrently to avoid synchronous chaining. Results are synchronized before the command
is completed.

Following commands are supported for cross-slot command execution:

* DEL: Delete the KEYs. Returns the number of keys that were removed.

» EXISTS: Count the number of KEYs that exist across the master nodes being responsible for the
particular key.

* MGET: Get the values of all given KEYs. Returns the values in the order of the keys.
 MSET: Set multiple key/value pairs for all given KEYs. Returns always 0K.

* TOUCH: Alters the last access time of all given KEYs. Returns the number of keys that were
touched.

* UNLINK: Delete the KEYs and reclaiming memory in a different thread. Returns the number of
keys that were removed.

Following commands are executed on multiple cluster nodes operations:

o CLIENT SETNAME: Set the client name on all known cluster node connections. Returns always 0K.
* KEYS: Return/Stream all keys that are stored on all masters.

» DBSIZE: Return the number of keys that are stored on all masters.

o FLUSHALL: Flush all data on the cluster masters. Returns always 0K.

* FLUSHDB: Flush all data on the cluster masters. Returns always 0K.

* RANDOMKEY: Return a random key from a random master.

» SCAN: Scan the keyspace across the whole cluster according to ReadFrom settings.

* SCRIPT FLUSH: Remove all the scripts from the script cache on all cluster nodes.

» SCRIPT LOAD: Load the script into the Lua script cache on all nodes.

o SCRIPT KILL: Kill the script currently in execution on all cluster nodes. This call does not fail
even if no scripts are running.

» SHUTDOWN: Synchronously save the dataset to disk and then shut down all nodes of the cluster.
Cross-slot command execution is available on the following APIs:

* RedisAdvancedClusterCommands

* RedisAdvanced(ClusterAsyncCommands

48

¢ RedisAdvancedClusterReactiveCommands

5.3.3. Execution of commands on one or multiple cluster nodes

Sometimes commands have to be executed on multiple cluster nodes. The advanced cluster API
allows to select a set of nodes (e.g. all masters, all replicas) and trigger a command on this set.

Example 34. Using NodeSelection API to read all keys from all replicas

RedisAdvancedClusterAsyncCommands<String, String> async = clusterClient.connect()

.async();
AsyncNodeSelection<String, String> replicas = connection.slaves();

AsyncExecutions<List<String>> executions = replicas.commands().keys("*");
executions.forEach(result -> result.thenAccept(keys -> System.out.println(keys)));

The commands are triggered concurrently. This API is currently only available for async
commands. Commands are dispatched to the nodes within the selection, the result
(CompletionStage) is available through AsyncExecutions.

A node selection can be either dynamic or static. A dynamic node selection updates its node set
upon a cluster topology view refresh. Node selections can be constructed by the following presets:

* masters

* slaves (operate on connections with activated READONLY mode)

 all nodes
A custom selection of nodes is available by implementing custom predicates or lambdas.

The particular results map to a cluster node (RedisClusterNode) that was involved in the node
selection. You can obtain the set of involved RedisClusterNodes and all results as CompletableFuture
from AsyncExecutions.

The node selection API is a technical preview and can change at any time. That approach allows
powerful operations but it requires further feedback from the users. So feel free to contribute.

5.3.4. Refreshing the cluster topology view

The Redis Cluster configuration may change at runtime. New nodes can be added, the master for a
specific slot can change. Lettuce handles MOVED and ASK redirects transparently but in case too many
commands run into redirects, you should refresh the cluster topology view. The topology is bound
to a RedisClusterClient instance. All cluster connections that are created by one RedisClusterClient
instance share the same cluster topology view. The view can be updated in three ways:

1. Either by calling RedisClusterClient.reloadPartitions

2. Periodic updates in the background based on an interval

49

#user-content-refreshing-the-cluster-topology-view
http://redis.paluch.biz/docs/api/current/com/lambdaworks/redis/cluster/api/async/RedisAdvancedClusterAsyncCommands.html#nodes-java.util.function.Predicate-

3. Adaptive updates in the background based on persistent disconnects and MOVED/ASK redirections

By default, commands follow -ASK and -MOVED redirects up to 5 times until the command execution
is considered to be failed. Background topology updating starts with the first connection obtained
through RedisCluster(Client.

5.3.5. Connection Count for a Redis Cluster Connection Object

With Standalone Redis, a single connection object correlates with a single transport connection.
Redis Cluster works differently: A connection object with Redis Cluster consists of multiple
transport connections. These are:

» Default connection object (Used for key-less commands and for Pub/Sub message publication)
* Connection per node (read/write connection to communicate with individual Cluster nodes)

* When using ReadFrom: Read-only connection per read replica node (read-only connection to read
data from read replicas)

Connections are allocated on demand and not up-front to start with a minimal set of connections.
Formula to calculate the maximum number of transport connections for a single connection object:

1T+ (N*2)

Where N is the number of cluster nodes.

Apart of connection objects, RedisClusterClient uses additional connections for topology refresh.
These are created on topology refresh and closed after obtaining the topology:

 Set of connections for cluster topology refresh (a connection to each cluster node)

5.3.6. Client-options

See Cluster-specific Client options.

Examples

50

Example 35. Connecting to a Redis Cluster

RedisURI redisUri = RedisURI.Builder.redis("localhost").withPassword(
"authentication").build();

RedisClusterClient clusterClient = RedisClusterClient.create(redisUri);
StatefulRedisClusterConnection<String, String> connection = clusterClient.connect

();

RedisAdvancedClusterCommands<String, String> syncCommands = connection.sync();

connection.close();
clusterClient.shutdown();

Example 36. Connecting to a Redis Cluster with multiple seed nodes

RedisURI node1
RedisURI node2

RedisURI.create("nodel1", 6379);
RedisURI.create("node2", 6379);

RedisClusterClient clusterClient = RedisClusterClient.create(Arrays.asList(nodel,
node?));
StatefulRedisClusterConnection<String, String> connection

();

RedisAdvancedClusterCommands<String, String> syncCommands = connection.sync();

clusterClient.connect

connection.close();
clusterClient.shutdown();

Example 37. Enabling periodic cluster topology view updates

RedisClusterClient clusterClient = RedisClusterClient.create(RedisURI.create(
"localhost", 6379));

ClusterTopologyRefreshOptions topologyRefreshOptions =
ClusterTopologyRefreshOptions.builder()
.enablePeriodicRefresh(10, TimeUnit.MINUTES)
.build();

clusterClient.setOptions(ClusterClientOptions.builder()

.topologyRefreshOptions(topologyRefreshOptions)
.build());

clusterClient.shutdown();

Example 38. Enabling adaptive cluster topology view updates

32

RedisURI node1
RedisURI node2

RedisURI.create("node1", 6379);
RedisURI.create("node2", 6379);

RedisClusterClient clusterClient = RedisClusterClient.create(Arrays.asList(nodel,
node?));

ClusterTopologyRefreshOptions topologyRefreshOptions =
ClusterTopologyRefreshOptions.builder()
.enableAdaptiveRefreshTrigger(RefreshTrigger
.MOVED_REDIRECT, RefreshTrigger.PERSISTENT_RECONNECTS)
.adaptiveRefreshTriggersTimeout (30, TimeUnit
.SECONDS)
.build();

clusterClient.setOptions(ClusterClientOptions.builder()

.topologyRefreshOptions(topologyRefreshOptions)
.build());

clusterClient.shutdown();

Example 39. Obtaining a node connection

RedisURI node1
RedisURI node2

RedisURI.create("node1", 6379);
RedisURI.create("node2", 6379);

RedisClusterClient clusterClient = RedisClusterClient.create(Arrays.asList(nodeT,
node?));
StatefulRedisClusterConnection<String, String> connection = cluster(Client.connect

();

RedisClusterCommands<String, String> nodel = connection.getConnection("host",
7379).sync();

// do not close nodeT

connection.close();
clusterClient.shutdown();

5.4. ReadFrom Settings

The ReadFrom setting describes how Lettuce routes read operations to replica nodes.

By default, Lettuce routes its read operations in multi-node connections to the master node.
Reading from the master returns the most recent version of the data because write operations are
issued to the single master node. Reading from masters guarantees strong consistency.

You can reduce latency or improve read throughput by distributing reads to replica members for
applications that do not require fully up-to-date data.

Be careful if using other ReadFrom settings than MASTER. Settings other than MASTER may return stale
data because the replication is asynchronous. Data in the replicas may not hold the most recent
data.

5.4.1. Redis Cluster

Redis Cluster is a multi-node operated Redis setup that uses one or more master nodes and allows
to setup replica nodes. Redis Cluster connections allow to set a ReadFrom setting on connection level.
This setting applies for all read operations on this connection.

33

Example 40. Enable Replica reads with ReadFrom.REPLICA

RedisClusterClient client = RedisClusterClient.create(RedisURI.create("host",
7379));

StatefulRedisClusterConnection<String, String> connection = client.connect();
connection.setReadFrom(ReadFrom.REPLICA);

RedisAdvancedClusterCommands<String, String> sync = connection.sync();
sync.set(key, "value");

sync.get(key); // replica read

connection.close();
client.shutdown();

5.4.2. Master/Replica connections

Redis nodes can be operated in a Master/Replica setup to achieve availability and performance.
Master/Replica setups can be run either Standalone or managed using Redis Sentinel. Lettuce
allows to use replica nodes for read operations by using the MasterReplica API that supports both
Master/Replica setups:

1. Redis Standalone Master/Replica (no failover)

2. Redis Sentinel Master/Replica (Sentinel-managed failover)

The resulting connection uses in any case the primary connection-point to dispatch non-read
operations.

Redis Sentinel

Master/Replica with Redis Sentinel is very similar to regular Redis Sentinel operations. When the
master fails over, a replica is promoted by Redis Sentinel to the new master and the client obtains
the new topology from Redis Sentinel.

Connections to Master/Replica require one or more Redis Sentinel connection points and a master
name. The primary connection point is the Sentinel monitored master node.

54

Example 41. Using ReadFrom with Master/Replica and Redis Sentinel

RedisURI sentinelUri = RedisURI.Builder.sentinel("sentinel-host", 26379, "master-
name").build();
RedisClient client = RedisClient.create();

StatefulRedisMasterReplicaConnection<String, String> connection = MasterReplica
.connect(

client,

new Utf8StringCodec(),

sentinelUri);

connection.setReadFrom(ReadFrom.REPLICA);
connection.sync().get("key"); // Replica read

connection.close();
client.shutdown();

Redis Standalone

Master/Replica with Redis Standalone is very similar to regular Redis Standalone operations. A
Redis Standalone Master/Replica setup is static and provides no built-in failover. Replicas are read
from the Redis Master node’s INFO command.

Connecting to Redis Standalone Master/Replica nodes requires connections to use the Redis Master
for the RedisURI. The node used within the RedisURI is the primary connection point.

Example 42. Using ReadFrom with Master/Replica and Redis Standalone (Master and Replica)

RedisURI masterUri
RedisClient client

RedisURI.Builder.redis("master-host", 6379).build();
RedisClient.create();

StatefulRedisMasterReplicaConnection<String, String> connection = MasterReplica
.connect(

client,

new Utf8StringCodec(),

masterUri);

connection.setReadFrom(ReadFrom.REPLICA);
connection.sync().get("key"); // Replica read

connection.close();
client.shutdown();

55

5.4.3. Use Cases for non-master reads

The following use cases are common for using non-master read settings and encourage eventual
consistency:

* Providing local reads for geographically distributed applications. If you have Redis and
application servers in multiple data centers, you may consider having a geographically
distributed cluster. Using the NEAREST setting allows the client to read from the lowest-latency
members, rather than always reading from the master node.

* Maintaining availability during a failover. Use MASTER_PREFERRED if you want an application to
read from the master by default, but to allow stale reads from replicas when the master node is
unavailable. MASTER_PREFERRED allows a "read-only mode" for your application during a failover.

* Increase read throughput by allowing stale reads If you want to increase your read throughput
by adding additional replica nodes to your cluster Use REPLICA to read explicitly from replicas
and reduce read load on the master node. Using replica reads can highly lead to stale reads.

5.4.4. Read from settings

All ReadFrom settings except MASTER may return stale data because replicas replication is
asynchronous and requires some delay. You need to ensure that your application can tolerate stale
data.

Setting Description

MASTER Default mode. Read from the current master
node.

MASTER_PREFERRED Read from the master, but if it is unavailable,
read from replica nodes.

REPLICA Read from replica nodes.

REPLICA_PREFERRED Read from the replica nodes, but if none is

unavailable, read from the master.

NEAREST Read from any node of the cluster with the
lowest latency.

The latency of the nodes is determined upon cluster topology refresh. If the
O topology view is never refreshed, values from the initial cluster nodes read are
w

used.

Custom read settings can be implemented by extending the io.lettuce.core.ReadFrom class.

36

Chapter 6. Working with dynamic Redis
Command Interfaces

The Redis Command Interface abstraction provides a dynamic way for typesafe Redis command
invocation. It allows you to declare an interface with command methods to significantly reduce
boilerplate code required to invoke a Redis command.

6.1. Introduction

Redis is a data store supporting over 190 documented commands and over 450 command
permutations. The community supports actively Redis development; each major Redis release
comes with new commands. Command growth and keeping track with upcoming modules are
challenging for client developers and Redis user as there is no full command coverage for each
module in a single Redis client.

The central interface in lettuce Command Interface abstraction is Commands. This interface acts
primarily as a marker interface to help you to discover interfaces that extend this one. The
KeyCommands interface below declares some command methods.

Example 43. Command interface

public interface KeyCommands extends Commands {
String get(String key); ©)
String set(String key, String value); @

String set(String key, byte[] value); ©)

@ Retrieves a key by its name.
@ Sets a key and value.

® Sets a key and a value by using bytes.

The interface from above declares several methods. Let’s take a brief look at String set(String key,
String value). We can derive from that declaration certain things:

¢ It should be executed synchronously - there’s no asynchronous or reactive wrapper declared in
the result type.

* The Redis command method returns a String - that reveals something regarding the command
result expectation. This command expects a reply that can be represented as String.

e The method is named set so the derived command will be named set.

» There are two parameters defined: String key and String value. Although Redis does not take
any other parameter types than bulk strings, we still can apply a transformation to the

57

parameters — we can conclude their serialization from the declared type.

The set command from above called would look like:
commands.set("key", "value");
This command translates to:

SET key value

6.2. Command methods

With lettuce, declaring command methods becomes a four-step process:

1. Declare an interface extending Commands.
interface KeyCommands extends Commands { [}
2. Declare command methods on the interface.

interface KeyCommands extends Commands {
String get(String key);
}

3. Set up lettuce to create proxy instances for those interfaces.

RedisClient client =10
RedisCommandFactory factory = new RedisCommandFactory(client.connect());

4, Get the commands instance and use it.

public class SomeClient {
KeyCommands commands;

public SomeClient(RedisCommandFactory factory) {
commands = factory.getCommands(KeyCommands.class);

}

public void doSomething() {
String value = commands.get("Walter");

}

38

The sections that follow explain each step in detail.

6.3. Defining command methods

As a first step, you define a specific command interface. The interface must extend Commands.

Command methods are declared inside the commands interface like regular methods (probably not
that much of a surprise). Lettuce derives commands (name, arguments, and response) from each
declared method.

6.3.1. Command naming

The commands proxy has two ways to derive a Redis command from the method name. It can
derive the command name from the method name directly, or by using a manually defined @Command
annotation. However, there’s got to be a strategy that decides what actual command is created. Let’s
have a look at the available options.

Example 44. MixedCommands interface annotated with @Command and @CommandNaming

public interface MixedCommands extends Commands {

List<String> mget(String... keys); @
("MGET")
List<Value<String> mgetAsValues(String... keys); @

(strategy = DOT)
double nrRun(String key, int... indexes) ®

@ Plain command method. Lettuce will derive to the MGET command.

@ Command method annotated with @Command. Lettuce will execute MGET since annotations
have a higher precedence than method-based name derivation.

® Redis commands consist of one or multiple command parts or follow a different naming
strategy. The recommended pattern for commands provided by modules is using dot
notation. Command methods can derive from "camel humps" that style by placing a dot (.)
between name parts.

Command names are attempted to be resolved against CommandType to participate in
settings for known commands. These are primarily used to determine a command

o intent (whether a command is a read-only one). Commands are resolved case-
sensitive. Use lower-case command names in @Command to resolve to an unknown
command to e.g. enforce master-routing.

39

6.3.2. CamelCase in method names

Command methods use by default the method name command type. This is ideal for commands like
GET, SET, ZADD and so on. Some commands, such as CLIENT SETNAME consist of multiple command
segments and passing SETNAME as argument to a method client(0) feels rather clunky.

Camel case is a natural way to express word boundaries in method names. These "camel humps"
(changes in letter casing) can be interpreted in different ways. The most common case is to
translate a change in case into a space between command segments.

interface ServerCommands extends Commands {
String clientSetname(String name);

Invoking clientSetname(0) will execute the Redis command CLIENT SETNAME name.

@CommandNaming

Camel humps are translated to whitespace-delimited command segments by default. Methods and
the commands interface can be annotated with @CommandNaming to apply a different strategy.

(strategy = Strategy.DOT)
interface MixedCommands extends Commands {

(strategy = Strategy.SPLIT)
String clientSetname(String name);

(strategy = Strategy.METHOD_NAME)
String mSet(String key1, String valuel, String key2, String value2);

double nrRun(String key, int... indexes)

You can choose amongst multiple strategies:
o SPLIT: Splits camel-case method names into multiple command segments: clientSetname
executes CLIENT SETNAME. This is the default strategy.
* METHOD_NAME: Uses the method name as-is: mSet executes MSET.

* DOT: Translates camel-case method names into dot-notation that is the recommended pattern for
module-provided commands. nrRun executes NR.RUN.

6.3.3. @Command annotation

You already learned, that method names are used as command type any by default all arguments
are appended to the command. Some cases, such as the example from above, require in Java
declaring a method with a different name because of variance in the return type. mgetAsValues
would execute a non-existent command MGETASVALUES.

60

Annotating command methods with @Command lets you take control over implicit conventions. The
annotation value overrides the command name and provides command segments to command
methods. Command segments are parts of a command that are sent to Redis. The semantics of a
command segment depend on context and the command itself. @Command("CLIENT SETNAME") denotes
a subcommand of the CLIENT command while a method annotated with @Command("SET key") invokes
SET, using mykey as key. @Command lets you specify whole command strings and reference parameters
to construct custom commands.

interface MixedCommands extends Commands {

("CLIENT SETNAME")
String setName(String name);

("MGET")
List<Value<String> mgetAsValues(String... keys);

("SET mykey")
String set(String value);

("NR.OBSERVE 7?0 ?1 -> ?2 TRAIN")
List<Integer> nrObserve(String key, int[] in, int... out)

6.3.4. Parameters

Most Redis commands take one or more parameters to operate with your data. Using command
methods with Redis appends all parameters in their specified order to the command as arguments.
You have already seen commands annotated with @Command("MGET") or with no annotation at all.
Commands append their parameters as command arguments as declared in the method signature.

interface MixedCommands extends Commands {

("SET 21 70")
String set(String value, String key);

("NR.OBSERVE :key :in -> :out TRAIN")
List<Integer> nrObserve(("key") String key, ("in") int[] in, (
"out") int... out)

}

@Command-annotated command methods allow references to parameters. You can use index-based or
name-based parameter references. Index-based references (70, 71, ...) are zero-based. Name-based
parameters (:key, :in) reference parameters by their name. Java 8 provides access to parameter
names if the code was compiled with javac -parameters. Parameter names can be supplied
alternatively by @Param. Please note that all parameters are required to be annotated if using @Param.

61

o The same parameter can be referenced multiple times. Not referenced parameters
are appended as arguments after the last command segment.

Keys and values

Redis commands are usually less concerned about key and value type since all data is bytes anyway.

In

the context of Redis Cluster, the very first key affects command routing. Keys and values are

discovered by verifying their declared type assignability to RedisCodec key and value types. In some
cases, where keys and values are indistinguishable from their types, it might be required to hint
command methods about keys and values. You can annotate key and value parameters with @Key
and @Value to control which parameters should be treated as keys or values.

interface KeyCommands extends Commands {

String set(String key, String value);

Hinting command method parameters influences RedisCodec selection.

Parameter types

Co

mmand method parameter types are just limited by the RedisCodecs that are supplied to

RedisCommandFactory. Command methods, however, support a basic set of parameter types that are
agnostic to the selected codec. If a parameter is identified as key or value and the codec supports
that parameter, this specific parameter is encoded by applying codec conversion.

Built-in parameter types:

62

String - encoded to bytes using ASCII.
byte[]
double/Double

ProtocolKeyword - using its byte-representation. ProtocolKeyword is useful to declare/reuse
commonly wused Redis keywords, see io.lettuce.core.protocol.CommandType and
io.lettuce.core.protocol.CommandKeyword.

Map - key and value encoding of key-value pairs using RedisCodec.

types implementing io.lettuce.core.CompositeParameter - Lettuce comes with a set of command
argument types such as BitFieldArgs, SetArgs, SortArgs, ... that can be used as parameter.
Providing CompositeParameter will ontribute multiple command arguments by invoking the
CompositeParameter.build(CommandArgs) method.

Value, KeyValue, and ScoredValue that are encoded to their value, key and value and score and
value representation using RedisCodec.

GeoCoordinates - contribute longitude and latitude command arguments

Limit - used together with ZRANGEBYLEX/ZRANGEBYSCORE commands. Will add LIMIT (offset)
(count) segments to the command.

* Range - used together with ZCOUNT/ZRANGEBYLEX/ZRANGEBYSCORE commands. Numerical commands
are converted to numerical boundaries (+inf, (1.0, [1.0). Value-typed Range parameters are
encoded to their value boundary representation (+, -, [value, (value).

Command methods accept other, special parameter types such as Timeout or FlushMode that control
execution-model specific behavior. Those parameters are filtered from command arguments.

6.3.5. Codecs

Redis command interfaces use RedisCodecs for key/value encoding and decoding. Each command
method performs RedisCodec resolution so each command method can use a different RedisCodec.
Codec resolution is based on key and value types declared in the command method signature. Key
and value parameters can be annotated with @Key/@Value annotations to hint codec resolution to the
appropriate types. Codec resolution checks all annotated parameters for compatibility. If types are
assignable to codec types, the codec is selected for a particular command method.

Codec resolution without annotation is based on a compatible type majority. A command method
resolves to the codec accepting the most compatible types. See also Keys and values for details on
key/value encoding. Depending on provided codecs and the command method signature it’s
possible that no codec can be resolved. You need to provide either a compatible RedisCodec or adjust
parameter types in the method signature to provide a compatible method signature.
RedisCommandFactory uses StringCodec (UTF-8) and ByteArrayCodec by default.

Example 45. Initialize RedisCommandFactory with multiple RedisCodecs

RedisCommandFactory factory = new RedisCommandFactory(connection, Arrays.asList
(new ByteArrayCodec(), new StringCodec(LettuceCharsets.UTF8)));

The resolved codec is also applied to command response deserialization that allows you to use
parametrized command response types.

6.3.6. Response types

Another aspect of command methods is their response type. Redis command responses consist of
simple strings, bulk strings (byte streams) or arrays with nested elements depending on the issued
command.

You can choose amongst various return types that map to a particular {custom-commands-
command-output-link}. A command output can return either its return type directly (List<String>
for StringlListOutput) or stream individual elements (String for StringlListOutput as it implements
StreamingOutput<String>). Command output resolution depends on whether the declared return
type supports streaming. The currently only supported streaming output are reactive wrappers
such as Flux.

RedisCommandFactory comes with built-in command outputs that are resolved from OutputRegistry.
You can choose from built-in command output types or register your own CommandOutput.

A command method can return its response directly or wrapped in a response wrapper. See

63

Execution models for execution-specific wrapper types.

Table 1. Built-in command output types

CommandOutput class
ListOfMapsOutput
ArrayOutput
DoubleOQutput

ByteArrayOutput
IntegerQutput

KeyOutput

KeyListOutput

ValueQutput

ValuelistOutput
ValueSetQOutput

MapOutput

BooleanOutput
BooleanListOutput
GeoCoordinatesListOutput
GeoCoordinatesValuelistOutput
ScoredValuelistOutput
StringValuelistOutput (ASCII)

StringListOutput (ASCII)
ValueValuelistOutput
VoidOutput

return type

List<Map<K, V>>
List<Object>

Double, double

byte[]

Long, long

K (Codec key type)

List<K> (Codec key type)

V (Codec value type)
List<V> (Codec value type)
Set<V> (Codec value type)
Map<K, V>

Boolean, boolean
List<Boolean>
GeoCoordinates
List<Value<GeoCoordinates>>

List<ScoredValue<V>>

List<Value<String>>
List<String>
List<Value<V>>

Void, void

6.4. Execution models

Each declared command methods requires a synchronization mode, more specific an execution
model. Lettuce uses an event-driven command execution model to send commands, process
responses, and signal completion. Command methods can execute their commands in a

synchronous, asynchronous or reactive way.

The choice of a particular execution model is made on return type level, more specific on the return
type wrapper. Each command method may use a different execution model so command methods
within a command interface may mix different execution models.

6.4.1. Synchronous (Blocking) Execution

Declaring a non-wrapped return type (like List<V>, String) will execute commands synchronously.
See {custom-commands-command-exec-model-link} on more details on synchronous command

execution.

64

streaming type

K (Codec key type)

V (Codec value type)

Boolean

Value<GeoCoordinates>
ScoredValue<V>

Value<String>
String

Value<V>

Blocking command execution applies by default timeouts set on connection level. Command
methods support timeouts on invocation level by defining a special Timeout parameter. The
parameter position does not affect command segments since special parameters are filtered from
the command arguments. Supplying null will apply connection defaults.

interface KeyCommands extends Commands {

String get(String key, Timeout timeout);

KeyCommands commands = 0

commands.get("key", Timeout.create(10, TimeUnit.SECONDS));

6.4.2. Asynchronous (Future) Execution

Command methods wrapping their response in Future, CompletableFuture, CompletionStage or
RedisFuture will execute their commands asynchronously. Invoking an asynchronous command
method will send the command to Redis at invocation time and return a return handle that allows
you to synchronize or chain command execution.

interface KeyCommands extends Commands {

RedisFuture<String> get(String key, Timeout timeout);

6.4.3. Reactive Execution

You can declare command methods that wrap their response in a reactive type for reactive
command execution. Invoking a reactive command method will not send the command to Redis
until the resulting subscriber signals demand for data to its subscription. Using reactive wrapper
types allow result streaming by emitting data as it’s received from the I/O channel.

Currently supported reactive types:

* Project Reactor Mono and Flux (native)
* RxJava 1 Single and Observable (via rxjava-reactive-streams)

* RxJava 2 Single, Maybe and Flowable (via rxjava 2.0)

See Reactive API for more details.

65

interface KeyCommands extends Commands {

@Command("GET")
Mono<String> get(String key);

@Command("GET")
Maybe<String> getRxJava2Maybe(String key);

Flowable<String> lrange(String key, long start, long stop);

6.4.4. Batch Execution

Command interfaces support command batching to collect multiple commands in a batch queue
and flush the batch in a single write to the transport. Command batching executes commands in a
deferred nature. This means that at the time of invocation no result is available. Batching can be
only used with synchronous methods without a return value (void) or asynchronous methods
returning a RedisFuture. Reactive command batching is not supported because reactive executed
commands maintain an own subscription lifecycle that is decoupled from command method
batching.

Command batching can be enabled on two levels:

* On class level by annotating the command interface with @BatchSize. All methods participate in
command batching.

* On method level by adding CommandBatching to the arguments. Method participates selectively in
command batching.

@BatchSize(50)
interface StringCommands extends Commands {

void set(String key, String value);
RedisFuture<String> get(String key);

RedisFuture<String> get(String key, CommandBatching batching);
}

StringCommands commands = [

commands.set("key", "value"); // queued until 50 command invocations reached.
// The 50th invocation flushes the queue.

commands.get("key", CommandBatching.queue()); // invocation-level queueing control

commands.get("key", CommandBatching.flush()); // invocation-level queueing control,
// flushes all queued commands

66

Batching can be controlled on per invocation by passing a CommandBatching argument.
CommandBatching has precedence over @BatchSize.

To flush queued commands at any time (without further command invocation), add BatchExecutor
to your interface definition.

(50)
interface StringCommands extends Commands, BatchExecutor {

RedisFuture<String> get(String key);
}

StringCommands commands = [
commands.set("key");

commands.flush() // force-flush

Batch execution synchronization

Queued command batches are flushed either on reaching the batch size or force flush (via
BatchExecutor.flush() or CommandBatching.flush()). Errors are transported through RedisFuture.
Synchronous commands don’t receive any result/exception signal except if the batch is flushed
through a synchronous method call. Synchronous flushing throws BatchException containing the
failed commands.

67

Chapter 7. Advanced usage

7.1. Configuring Client resources

Client resources are configuration settings for the client related to performance, concurrency, and
events. A vast part of Client resources consists of thread pools (EventLoopGroups and a
EventExecutorGroup) which build the infrastructure for the connection workers. In general, it is a
good idea to reuse instances of ClientResources across multiple clients.

Client resources are stateful and need to be shut down if they are supplied from outside the client.

7.1.1. Creating Client resources

Client resources are required to be immutable. You can create instances using two different
patterns:

The create() factory method
By using the create() method on DefaultClientResources you create ClientResources with default
settings:

ClientResources res = DefaultClientResources.create();

This approach fits the most needs.
Resources builder

You can build instances of DefaultClientResources by using the embedded builder. It is designed to
configure the resources to your needs. The builder accepts the configuration in a fluent fashion and
then creates the ClientResources at the end:

ClientResources res = DefaultClientResources.builder()
.i0ThreadPoolSize(4)
.computationThreadPoolSize(4)
.build()

7.1.2. Using and reusing (lientResources

A RedisClient and RedisClusterClient can be created without passing ClientResources upon
creation. The resources are exclusive to the client and are managed itself by the client. When
calling shutdown() of the client instance ClientResources are shut down.

RedisClient client = RedisClient.create();

client.shutdown();

68

If you require multiple instances of a client or you want to provide existing thread infrastructure,
you can configure a shared ClientResources instance using the builder. The shared Client resources
can be passed upon client creation:

ClientResources res = DefaultClientResources.create();
RedisClient client = RedisClient.create(res);
RedisClusterClient clusterClient = RedisClusterClient.create(res, seedUris);

client.shutdown();
clusterClient.shutdown();
res.shutdown();

Shared C(lientResources are never shut down by the client. Same applies for shared
EventLoopGroupProviders that are an abstraction to provide EventLoopGroups.

Why Runtime.getRuntime().availableProcessors() * 3?

Netty requires different EventlLoopGroups for NIO (TCP) and for EPoll (Unix Domain Socket)
connections. One additional EventExecutorGroup is used to perform computation tasks.
EventLoopGroups are started lazily to allocate Threads on-demand.

Shutdown

Every client instance requires a call to shutdown() to clear used resources. Clients with dedicated
ClientResources (i.e. no ClientResources passed within the constructor/create-method) will shut
down (ClientResources on their own.

Client instances with using shared C(lientResources (i.e. ClientResources passed using the
constructor/create-method) won’t shut down the ClientResources on their own. The ClientResources
instance needs to be shut down once it’s not used anymore.

7.1.3. Configuration settings

The basic configuration options are listed in the table below:

Name Method Default

1/0 Thread Pool Size ioThreadPoolSize Number of processors

The number of threads in the I/O thread pools. The number defaults to the number of available
processors that the runtime returns (which, as a well-known fact, sometimes does not represent
the actual number of processors). Every thread represents an internal event loop where all I/O
tasks are run. The number does not reflect the actual number of I/O threads because the client
requires different thread pools for Network (NIO) and Unix Domain Socket (EPoll) connections.
The minimum I/O threads are 3. A pool with fewer threads can cause undefined behavior.

Computation Thread Pool Size computationThreadPoolSize Number of processors

69

Name Method Default

The number of threads in the computation thread pool. The number defaults to the number of
available processors that the runtime returns (which, as a well-known fact, sometimes does not
represent the actual number of processors). Every thread represents an internal event loop where
all computation tasks are run. The minimum computation threads are 3. A pool with fewer threads
can cause undefined behavior.

7.1.4. Advanced settings

Values for the advanced options are listed in the table below and should not be changed unless
there is a truly good reason to do so.

Name Method Default
Provider for EventLoopGroup eventLoopGroupProvider none

For those who want to reuse existing netty infrastructure or the total control over the thread
pools, the EventLoopGroupProvider API provides a way to do so. EventLoopGroups are obtained and
managed by an EventLoopGroupProvider. A provided EventLoopGroupProvider is not managed by the
client and needs to be shut down once you do not longer need the resources.

Provided eventExecutorGroup none

EventExecutorGroup

For those who want to reuse existing netty infrastructure or the total control over the thread pools
can provide an existing EventExecutorGroup to the Client resources. A provided EventExecutorGroup
is not managed by the client and needs to be shut down once you do not longer need the resources.

Event bus eventBus DefaultEventBus

The event bus system is used to transport events from the client to subscribers. Events are about
connection state changes, metrics, and more. Events are published using a RxJava subject and the
default implementation drops events on backpressure. Learn more about the Reactive API. You
can also publish your own events. If you wish to do so, make sure that your events implement the
Event marker interface.

Command latency collector commandLatencyCollectorOptions DefaultCommandLatencyCollector

options Options

The client can collect latency metrics during while dispatching commands. The options allow
configuring the percentiles, level of metrics (per connection or server) and whether the metrics
are cumulative or reset after obtaining these. Command latency collection is enabled by default
and can be disabled by setting commandLatencyPublisherOptions(l) to
DefaultEventPublisherOptions.disabled(). Latency collector requires LatencyUtils to be on your
class path.

Command latency collector commandLatencyCollector DefaultCommandLatencyCollector
The client can collect latency metrics during while dispatching commands. Command latency
metrics is collected on connection or server level. Command latency collection is enabled by

default and can be disabled by setting commandLatencyCollectorOptions(0) to
DefaultCommandLatencyCollectorOptions.disabled().

70

Name Method Default

Latency event publisher commandLatencyPublisherOptions DefaultEventPublisherOptions
options

Command latencies can be published using the event bus. Latency events are emitted by default
every 10 minutes. Event publishing can be disabled by setting commandLatencyPublisherOptions(D)
to DefaultEventPublisherOptions.disabled().

DNS Resolver dnsResolver DnsResolvers.JVM_DEFAULT (or
netty if present)

Since: 3.5, 4.2

Configures a DNS resolver to resolve hostnames to a java.net.InetAddress. Defaults to the JVM DNS
resolution that uses blocking hostname resolution and caching of lookup results. Users of DNS-
based Redis-HA setups (e.g. AWS ElastiCache) might want to configure a different DNS resolver.
Lettuce comes with DirContextDnsResolver that uses Java’s DnsContextFactory to resolve hostnames.
DirContextDnsResolver allows using either the system DNS or custom DNS servers without caching
of results so each hostname lookup yields in a DNS lookup.

Since 4.4: Defaults to DnsResolvers.UNRESOLVED to use netty’s AddressResolver that resolves DNS
names on Bootstrap.connect() (requires netty 4.1)

Reconnect Delay reconnectDelay Delay.exponential()

Since: 4.2

Configures a reconnect delay used to delay reconnect attempts. Defaults to binary exponential
delay with an upper boundary of 30 SECONDS. See Delay for more delay implementations.

Netty Customizer NettyCustomizer none

Since: 4.4

Configures a netty customizer to enhance netty components. Allows customization of Bootstrap
after Bootstrap configuration by Lettuce and Channel customization after all Lettuce handlers are
added to Channel. The customizer allows custom SSL configuration (requires RedisURI in plain-text
mode, otherwise Lettuce’s configures SSL), adding custom handlers or setting customized
Bootstrap options. Misconfiguring Bootstrap or Channel can cause connection failures or undesired
behavior.

Tracing tracing disabled

Since: 5.1

Configures a tracing instance to trace Redis calls. Lettuce wraps Brave data models to support
tracing in a vendor-agnostic way if Brave is on the class path. A Brave tracing instance can be

created using BraveTracing.create(clientTracing);, where clientTracingis a created or existent
Brave tracing instance .

71

7.2. Client Options

Client options allow controlling behavior for some specific features.

Client options are immutable. Connections inherit the current options at the moment the
connection is created. Changes to options will not affect existing connections.

client.setOptions(ClientOptions.builder()

.autoReconnect(false)
.pingBeforeActivateConnection(true)
.build());
Name Method Default
PING before activating pingBeforeActivateConnection false

connection

Since: 3.1, 4.0

Enables the initial PING barrier before any connection is usable. If true, every connection and
reconnect will issue a PING command and awaits its response before the connection is activated
and enabled for use. If the check fails, the connect/reconnect is treated as a failure. Failed PING's on
reconnect are handled as protocol errors and can suspend reconnection if
suspendReconnectOnProtocolFailure is enabled.

The PING will validate whether the other end of the connected socket is a service that behaves like
a Redis server.

Auto-Reconnect autoReconnect true

Since: 3.1, 4.0

Controls auto-reconnect behavior on connections. As soon as a connection gets closed/reset
without the intention to close it, the client will try to reconnect, activate the connection and re-
issue any queued commands.

This flag also has the effect that disconnected connections will refuse commands and cancel these
with an exception.

Cancel commands on reconnect cancelCommandsOnReconnectFailu false

failure re

Since: 3.1, 4.0

If this flag is true any queued commands will be canceled when a reconnect fails within the
activation sequence. The reconnect itself has two phases: Socket connection and
protocol/connection activation. In case a connect timeout occurs, a connection reset, host lookup
fails, this does not affect the cancelation of commands. In contrast, where the protocol/connection
activation fails due to SSL errors or PING before activating connection failure, queued commands
are canceled.

72

Name Method Default

Suspend reconnect on protocol suspendReconnectOnProtocolFail false (was introduced in 3.1

failure ure with default true)

Since: 3.1, 4.0

If this flag is true the reconnect will be suspended on protocol errors. The reconnect itself has two
phases: Socket connection and protocol/connection activation. In case a connect timeout occurs, a
connection reset, host lookup fails, this does not affect the cancellation of commands. In contrast,
where the protocol/connection activation fails due to SSL errors or PING before activating
connection failure, queued commands are canceled.

Reconnection can be activated again, but there is no public API to obtain the ConnectionWatchdog
instance.

Request queue size requestQueueSize 2147483647 (Integer#MAX_VALUE)

Since: 3.4, 4.1

Controls the per-connection request queue size. The command invocation will lead to a
RedisException if the queue size is exceeded. Setting the requestQueueSize to a lower value will lead
earlier to exceptions during overload or while the connection is in a disconnected state. A higher
value means hitting the boundary will take longer to occur, but more requests will potentially be
queued, and more heap space is used.

Disconnected behavior disconnectedBehavior DEFAULT

Since: 3.4, 4.1

A connection can behave in a disconnected state in various ways. The auto-connect feature allows
in particular to retrigger commands that have been queued while a connection is disconnected.

The disconnected behavior setting allows fine-grained control over the behavior. Following
settings are available:

DEFAULT: Accept commands when auto-reconnect is enabled, reject commands when auto-
reconnect is disabled.

ACCEPT_COMMANDS: Accept commands in disconnected state.

REJECT_COMMANDS: Reject commands in disconnected state.

SSL Options ss10ptions (none), use JDK defaults

Since: 4.3
Configure SSL options regarding SSL providers (JDK/OpenSSL) and key store/trust store.

Socket Options socketOptions 10 seconds Connection-Timeout,
no keep-alive, no TCP noDelay

Since: 4.3

Options to configure low-level socket options for the connections kept to Redis servers.

73

Name Method Default

Timeout Options timeoutOptions Do not timeout commands.

Since: 5.1

Options to configure command timeouts applied to timeout commands after dispatching these
(active connections, queued while disconnected, batch buffer). By default, use synchronization
timeouts only on the synchronous API.

Publish Reactive Signa]s on pubh shOnScheduler Use I/0 thread.
Scheduler

Since: 5.1.4

Use a dedicated Scheduler to emit reactive data signals. Enabling this option can be useful for
reactive sequences that require a significant amount of processing with a single/a few Redis
connections performance suffers from a single-thread-like behavior. Enabling this option uses
EventExecutorGroup configured through ClientResources for data/completion signals. The used
Thread is sticky across all signals for a single Publisher instance.

7.2.1. Cluster-specific options
Cluster client options extend the regular client options by some cluster specifics.

Cluster client options are immutable. Connections inherit the current options at the moment the
connection is created. Changes to options will not affect existing connections.

ClusterTopologyRefreshOptions topologyRefreshOptions = ClusterTopologyRefreshOptions
.builder()
.enablePeriodicRefresh(refreshPeriod(10, TimeUnit.MINUTES))
.enableAllAdaptiveRefreshTriggers()
.build();

client.setOptions(ClusterClientOptions.builder()
.topologyRefreshOptions(topologyRefreshOptions)

.build());
Name Method Default
Periodic cluster topology enablePeriodicRefresh false

refresh

74

Name Method Default
Since: 3.1, 4.0

Enables or disables periodic cluster topology refresh. The refresh is handled in the background.
Partitions, the view on the Redis cluster topology, are valid for a whole RedisClusterClient
instance, not a connection. All connections created by this client operate on the one cluster

topology.

The refresh job is regularly executed, the period between the runs can be set with refreshPeriod.
The refresh job starts after either opening the first connection with the job enabled or by calling
reloadPartitions. The job can be disabled without discarding the full client by setting new client
options.

Cluster topology refresh period refreshPeriod 6@ SECONDS
Since: 3.1, 4.0

Set the period between the refresh job runs. The effective interval cannot be changed once the
refresh job is active. Changes to the value will be ignored.

Adaptive cluster topology enableAdaptiveRefreshTrigger (none)
refresh

Since: 4.2

Enables selectively adaptive topology refresh triggers. Adaptive refresh triggers initiate topology
view updates based on events happened during Redis Cluster operations. Adaptive triggers lead to
an immediate topology refresh. These refreshes are rate-limited using a timeout since events can
happen on a large scale. Adaptive refresh triggers are disabled by default. Following triggers can
be enabled:

MOVED_REDIRECT, ASK_REDIRECT, PERSISTENT_RECONNECTS, UNKNOWN_NODE (since 5.1), and UNCOVERED_SLOT
(since 5.2) (see also reconnect attempts for the reconnect trigger)

Adaptive refresh triggers adaptiveRefreshTriggersTimeout 3@ SECONDS

timeout

Since: 4.2

Set the timeout between the adaptive refresh job runs. Multiple triggers within the timeout will be
ignored, only the first enabled trigger leads to a topology refresh. The effective period cannot be
changed once the refresh job is active. Changes to the value will be ignored.

Reconnect attempts (Adaptive ~ refreshTriggersReconnectAttemp 5
topology refresh trigger) ts

Since: 4.2
Set the threshold for the PERSISTENT_RECONNECTS refresh trigger. Topology updates based on

persistent reconnects lead only to a refresh if the reconnect process tries at least the number of
specified attempts. The first reconnect attempt starts with 1.

75

Name Method Default

Dynamic topology refresh dynamicRefreshSources true
sources

Since: 4.2

Discover cluster nodes from the topology and use only the discovered nodes as the source for the
cluster topology. Using dynamic refresh will query all discovered nodes for the cluster topology
details. If set to false, only the initial seed nodes will be used as sources for topology discovery and
the number of clients will be obtained only for the initial seed nodes. This can be useful when
using Redis Cluster with many nodes.

Note that enabling dynamic topology refresh sources uses node addresses reported by Redis
CLUSTER NODES output which typically contains IP addresses.

Close stale connections closeStaleConnections true

Since: 3.3, 4.1

Stale connections are existing connections to nodes which are no longer part of the Redis Cluster.
If this flag is set to true, then stale connections are closed upon topology refreshes. It’s strongly
advised to close stale connections as open connections will attempt to reconnect nodes if the node
is no longer available and open connections require system resources.

Limitation of cluster redirects MaxRedirects 5

Since: 3.1, 4.0

When the assignment of a slot-hash is moved in a Redis Cluster and a client requests a key that is
located on the moved slot-hash, the Cluster node responds with a -MOVED response. In this case, the
client follows the redirection and queries the cluster specified within the redirection. Under some
circumstances, the redirection can be endless. To protect the client and also the Cluster, a limit of
max redirects can be configured. Once the limit is reached, the -MOVED error is returned to the
caller. This limit also applies for -ASK redirections in case a slot is set to MIGRATING state.

Validate cluster node validateClusterNodeMembership true
membership

76

Name Method Default
Since: 3.3, 4.0

Validate the cluster node membership before allowing connections to that node. The current
implementation performs redirects using MOVED and ASK and allows obtaining connections to the
particular cluster nodes. The validation was introduced during the development of version 3.3 to
prevent security breaches and only allow connections to the known hosts of the CLUSTER NODES
output.

There are some scenarios, where the strict validation is an obstruction:

MOVED/ASK redirection but the cluster topology view is stale Connecting to cluster nodes using
different IP’s/hostnames (e.g. private/public IP’s)

Connecting to non-cluster members to reconfigure those while using the RedisClusterClient
connection.

7.2.2. Request queue size and cluster

Clustered operations use multiple connections. The resulting overall-queue limit is requestQueueSize
* ((number of cluster nodes * 2) + 1).

7.3. SSL. Connections

Lettuce supports SSL connections since version 3.1 on Redis Standalone connections and since
version 4.2 on Redis Cluster. Redis has no native SSL support, SSL is implemented usually by using
stunnel.

An example stunnel configuration can look like:

Example 46. stunnel.conf

cert=/etc/ssl/cert.pem
key=/etc/ssl/key.pem
capath=/etc/ssl/cert.pem
cafile=/etc/ssl/cert.pem
delay=yes
pid=/etc/ss1l/stunnel.pid
foreground = no

[redis]
accept = 127.0.0.1:6443
connect = 127.0.0.1:6479

Next step is connecting lettuce over SSL to Redis.

77

https://www.stunnel.org/index.html

Example 47. Connecting to Redis with SSL using RedisURI

RedisURI redisUri = RedisURI.Builder.redis("localhost")
WwithSsl(true)
.withPassword("authentication")
.withDatabase(2)
.build();

RedisClient client = RedisClient.create(redisUri);

Example 48. Connecting to Redis with SSL using String RedisURI

RedisURI redisUri = RedisURI.create("rediss://authentication@localhost/2");
RedisClient client = RedisClient.create(redisUri);

Example 49. Connecting to Redis Cluster with SSL using RedisURI

RedisURI redisUri = RedisURI.Builder.redis("localhost")
withSsl(true)
.withPassword("authentication")
.build();

RedisClusterClient client = RedisClusterClient.create(redisUri);

7.3.1. Limitations

Lettuce supports SSL only on Redis Standalone and Redis Cluster connections and since 5.2, also for
Master resolution using Redis Sentinel or Redis Master/Replicas.

7.3.2. Connection Procedure and Reconnect

When connecting using SSL, lettuce performs an SSL handshake before you can use the connection.
Plain text connections do not perform a handshake. Errors during the handshake throw
RedisConnectionExceptions.

Reconnection behavior is also different to plain text connections. If an SSL handshake fails on
reconnect (because of peer/certification verification or peer does not talk SSL) reconnection will be
disabled for the connection. You will also find an error log entry within your logs.

7.3.3. Certificate Chains/Root Certificate/Self-Signed Certificates

lettuce uses Java defaults for the trust store that is usually cacerts in your jre/lib/security
directory and comes with customizable SSL options via Configuring Client resources. If you need to

78

add you own root certificate, so you can configure Ss10ptions, import it either to cacerts or you
provide an own trust store and set the necessary system properties:

Example 50. Configuring Ss10ptions via Client options

Ss10ptions ss10ptions = Ss1Options.builder()
.jdkSs1Provider()
.truststore(new File("yourtruststore.jks"), "changeit")
.build();

ClientOptions clientOptions = ClientOptions.builder().ss10ptions(ssl0ptions).
build();

Example 51. Configuring a custom trust store via System Properties

System.setProperty("javax.net.ssl.trustStore", "yourtruststore.jks");
System.setProperty("javax.net.ssl.trustStorePassword", "changeit");

7.3.4. Host/Peer Verification

By default, lettuce verifies the certificate against the validity and the common name (Name
validation not supported on Java 1.6, only available on Java 1.7 and higher) of the Redis host you
are connecting to. This behavior can be turned off:

RedisURI redisUri = ...
redisUri.setVerifyPeer(false);

or

RedisURI redisUri = RedisURI.Builder.redis(host(), sslPort())
WwithSs1(true)
.withVerifyPeer(false)
.build();

7.3.5. StartTLS

If you need to issue a StartTLS before you can use SSL, set the startTLS property of RedisURI to true.
StartTLS is disabled by default.

RedisURI redisUri = ...
redisUri.setStartTls(true);

79

or

RedisURI redisUri = RedisURI.Builder.redis(host(), sslPort())
WwithSs1(true)
.withStartTls(true)
.build();

7.4. Native Transports
Netty provides two platform-specific JNI transports:

* epoll on Linux

* kqueue on MacOS/BSD

Lettuce defaults to native transports if the appropriate library is available within its runtime. Using
a native transport adds features specific to a particular platform, generate less garbage and
generally improve performance when compared to the NIO based transport. Native transports are
required to connect to Redis via Unix Domain Sockets and are suitable for TCP connections as well.

Native transports are available with:

* Linux x86_64 systems with a minimum netty version of 4.0.26.Final, requiring netty-
transport-native-epoll, classifier 1inux-x86_64

<dependency>
<groupId>io.netty</groupld>
<artifactId>netty-transport-native-epoll</artifactId>
<version>${netty-version}</version>
<classifier>linux-x86_b4</classifier>

</dependency>

* MacOS x86_64 systems with a minimum netty version of 4.1.11.Final, requiring netty-
transport-native-kqueue, classifier osx-x86_64

<dependency>
<groupId>io.netty</groupld>
<artifactId>netty-transport-native-kqueue</artifactId>
<version>${netty-version}</version>
<classifier>osx-x86_64</classifier>

</dependency>

You can disable native transport use through system properties. Set io.lettuce.core.epoll
respective io.lettuce.core.kqueue to false (default is true, if unset).

80

7.4.1. Limitations
Native transport support does not work with the shaded version of lettuce because of two reasons:

1. netty-transport-native-epoll and netty-transport-native-kqueue are not packaged into the
shaded jar. So adding the jar to the classpath will resolve in different netty base classes (such as
jo.netty.channel.EventLoopGroup instead of com.lambdaworks.io.netty.channel.EventLoopGroup)

2. Support for using epoll/kqueue with shaded netty requires netty 4.1 and all parts of netty to be
shaded.

See also Netty documentation on native transports.

7.5. Unix Domain Sockets

Lettuce supports since version 3.2 Unix Domain Sockets for local Redis connections.

Example 52. Connecting to Redis using RedisURI

RedisURI redisUri = RedisURI.Builder
.socket("/tmp/redis")
.withPassword("authentication")
.withDatabase(2)
.build();

RedisClient client = RedisClient.create(redisUri);

Example 53. Connecting to Redis using String RedisURI

RedisURI redisUri = RedisURI.create("redis-socket:///tmp/redis");
RedisClient client = RedisClient.create(redisUri);

Unix Domain Sockets are inter-process communication channels on POSIX compliant systems. They
allow exchanging data between processes on the same host operating system. When using Redis,
which is usually a network service, Unix Domain Sockets are usable only if connecting locally to a
single instance. Redis Sentinel and Redis Cluster, maintain tables of remote or local nodes and act
therefore as a registry. Unix Domain Sockets are not beneficial with Redis Sentinel and Redis
Cluster.

Using RedisClusterClient with Unix Domain Sockets would connect to the local node using a socket
and open TCP connections to all the other hosts. A good example is connecting locally to a
standalone or a single cluster node to gain performance.

See Native Transports for more details and limitations.

81

http://netty.io/wiki/native-transports.html

7.6. Streaming API

Redis can contain a huge set of data. Collections can burst your memory, when the amount of data
is too massive for your heap. Lettuce can return your collection data either as List/Set/Map or can
push the data on StreamingChannel interfaces.

StreamingChannels are similar to callback methods. Every method, which can return bulk data
(except transactions/multi and some config methods) specifies beside a regular method with a
collection return class also method which accepts a StreamingChannel. Lettuce interacts with a
StreamingChannel as the data arrives so data can be processed while the command is running and is
not yet completed.

There are 4 StreamingChannels accepting different data types:

» KeyStreamingChannel

ValueStreamingChannel

KeyValueStreamingChannel

ScoredValueStreamingChannel
The result of the steaming methods is the count of keys/values/key-value pairs as long value.

Example 54. Streaming results for HGETALL

Long count = redis.hgetall(new KeyValueStreamingChannel<String, String>()

{
public void onKeyValue(String key, String value)
{
}

o key);

Streaming happens real-time to the redis responses. The method call (future) completes after the
last call to the StreamingChannel.

7.6.1. Examples

82

http://redis.paluch.biz/docs/api/releases/latest/com/lambdaworks/redis/output/KeyStreamingChannel.html
http://redis.paluch.biz/docs/api/releases/latest/com/lambdaworks/redis/output/ValueStreamingChannel.html
http://redis.paluch.biz/docs/api/releases/latest/com/lambdaworks/redis/output/KeyValueStreamingChannel.html
http://redis.paluch.biz/docs/api/releases/latest/com/lambdaworks/redis/output/ScoredValueStreamingChannel.html

Example 55. ValueStreamingChannel using a Redis List

redis.lpush("key", "one")
redis.lpush("key", "two")
redis.lpush("key", "three")

Long count = redis.lrange(new ValueStreamingChannel<String, String>()

{
public void onValue(String value)
{
System.out.println("Value: " + value);
}

}I "key", @I _1);

System.out.println("Count: " + count);

will produce following output:

Value: one
Value: two
Value: three
Count: 3

7.7. Events

7.7.1. Before 3.4/4.1
lettuce can notify its users of certain events:

¢ Connected
e Disconnected

* Exceptions in the connection handler pipeline

You can subscribe to these events using RedisClient#addListener() and unsubscribe with
RedisClient.removelistener (). Both methods accept a RedisConnectionStatelListener.

RedisConnectionStatelistener receives as connection the async implementation of the connection.
This means if you use a sync way (e. g RedisConnection) you will receive the
RedisAsyncConnectionImpl instance

Example

83

RedisClient client = new RedisClient(host, port);
client.addListener(new RedisConnectionStatelistener()

{

public void onRedisConnected(RedisChannelHandler<?, 7> connection)

{
}

public void onRedisDisconnected(RedisChannelHandler<?, ?> connection)

{
}

public void onRedisExceptionCaught(RedisChannelHandler<?, ?> connection, Throwable
cause)

{

}
1

7.7.2. Since 3.4/4.1

The client produces events during its operation and uses an event bus for the transport. The
EventBus can be configured and obtained from the Client Options and is used for client- and custom
events.

Following events are sent by the client:

e Connection events
e Metrics events

* Cluster topology events

Subscribing to events

The simple-most approach to subscribing to the client events is obtaining the event bus from the
client’s client resources.

RedisClient client = RedisClient.create()
EventBus eventBus = client.getresources().eventBus();

eventBus.get().subscribe(e -> System.out.println(event));
client.shutdown();

Calls to the subscribe() method will return a Subscription. If you plan to unsubscribe from the

84

event stream, you can do so by calling the Subscription.unsubscribe() method. The event bus
utilizes RxJava and the {reactive-api} to transport events from the publisher to its subscribers.

A thread of the computation thread pool (can be configured using Client Options) transports the
events.

Connection events

When working with events, multiple events occur. These can be used to monitor connections or
react to these. Connection events transport the local and the remote connection points. The regular
order of connection events is:

1. Connected: The transport-layer connection is established (TCP or Unix Domain Socket
connection established). Event type: ConnectedEvent

2. Connection activated: The logical connection is activated and can be used to dispatch Redis

commands (SSL handshake complete, PING before activating response received). Event type:
ConnectionActivatedEvent

3. Disconnected: The transport-layer connection is closed/reset. That event occurs on regular
connection shutdowns and connection interruptions (outage). Event type: DisconnectedEvent

4. Connection deactivated: The logical connection is deactivated. The internal processing state is
reset and the isOpen() flag is set to false That event occurs on regular connection shutdowns
and connection interruptions (outage). Event type: ConnectionDeactivatedEvent

5. Since 5.3: Reconnect failed: A reconnect attempt failed. Contains the reconnect failure and and
the retry counter. Event type: ReconnectFailedEvent

Metrics events

Client command metrics is published using the event bus. The current event carries command
latency metrics. Latency metrics is segregated by connection or server and command which means
you can get detailed statistics on every command. Connection distinction allows seeing how
particular connections perform. Server distinction how particular servers perform. You can
configure metrics collection using Client Options.

In detail, two command latencies are recorded:

1. RTT from dispatching the command until the first command response is processed (first
response)

2. RTT from dispatching the command until the full command response is processed and at the
moment the command is completed (completion)

The latency metrics provide following statistics:

e Number of commands
* min latency
* max latency

* latency percentiles

85

http://reactivex.io

First Response Latency

The first response latency measuring begins at the moment the command sending begins
(command flush on the netty event loop). That is not the time at when at which the command was
issued from the client API. The latency time recording ends at the moment the client receives the
first command bytes and starts to process the command response. Both conditions must be met to
end the latency recording. The client could be busy with processing the previous command while
the first bytes are already available to read. That scenario would be a good time to file an issue for
improving the client performance. The first response latency value is good to determine the
lag/network performance and can give a hint on the client and server performance.

Completion Latency

The completion latency begins at the same time as the first response latency but lasts until the time
where the client is just about to call the complete() method to signal command completion. That
means all command response bytes arrived and were decoded/processed, and the response data
structures are ready for consumption for the user of the client. On completion callback duration
(such as async or observable callbacks) are not part of the completion latency.

Cluster events

When using Redis Cluster, you might want to know when the cluster topology changes. As soon as
the cluster client discovers the cluster topology change, a ClusterTopologyChangedEvent event is
published to the event bus. The time at which the event is published is not necessarily the time the
topology change occurred. That is because the client polls the topology from the cluster.

The cluster topology changed event carries the topology view before and after the change.

Make sure, you enabled cluster topology refresh in the Client options.

7.8. Pipelining and command flushing

Redis is a TCP server using the client-server model and what is called a Request/Response protocol.
This means that usually a request is accomplished with the following steps:

* The client sends a query to the server and reads from the socket, usually in a blocking way, for
the server response.
* The server processes the command and sends the response back to the client.
A request/response server can be implemented so that it is able to process new requests even if the

client did not already read the old responses. This way it is possible to send multiple commands to
the server without waiting for the replies at all, and finally read the replies in a single step.

Using the synchronous API, in general, the program flow is blocked until the response is
accomplished. The underlying connection is busy with sending the request and receiving its
response. Blocking, in this case, applies only from a current Thread perspective, not from a global
perspective.

To understand why using a synchronous API does not block on a global level we need to

86

https://github.com/mp911de/lettuce/issues
Client-options#cluster-topology-refresh

understand what this means. Lettuce is a non-blocking and asynchronous client. It provides a
synchronous API to achieve a blocking behavior on a per-Thread basis to create await
(synchronize) a command response. Blocking does not affect other Threads per se. Lettuce is
designed to operate in a pipelining way. Multiple threads can share one connection. While one
Thread may process one command, the other Thread can send a new command. As soon as the first
request returns, the first Thread’s program flow continues, while the second request is processed
by Redis and comes back at a certain point in time.

Lettuce is built on top of netty decouple reading from writing and to provide thread-safe
connections. The result is, that reading and writing can be handled by different threads and
commands are written and read independent of each other but in sequence. You can find more
details about message ordering in the Wiki to learn about command ordering rules in single- and
multi-threaded arrangements. The transport and command execution layer does not block the
processing until a command is written, processed and while its response is read. lettuce sends
commands at the moment they are invoked.

A good example is the async API. Every invocation on the async API returns a Future (response
handle) after the command is written to the netty pipeline. A write to the pipeline does not mean,
the command is written to the underlying transport. Multiple commands can be written without
awaiting the response. Invocations to the API (sync, async and starting with 4.0 also reactive API)
can be performed by multiple threads.

Sharing a connection between threads is possible but keep in mind:
The longer commands need for processing, the longer other invoker wait for their results

You should not use transactional commands (MULTI) on shared connection. If you use Redis-blocking
commands (e. g. BLPOP) all invocations of the shared connection will be blocked until the blocking
command returns which impacts the performance of other threads. Blocking commands can be a
reason to use multiple connections.

7.8.1. Command flushing

Command flushing is an advanced topic and in most cases (i.e. unless your use-
o case is a single-threaded mass import application) you won’t need it as Lettuce
uses pipelining by default.

The normal operation mode of lettuce is to flush every command which means, that every
command is written to the transport after it was issued. Any regular user desires this behavior. You
can control command flushing since Version 3.3.

Why would you want to do this? A flush is an expensive system call and impacts performance.
Batching, disabling auto-flushing, can be used under certain conditions and is recommended if:

* You perform multiple calls to Redis and you’re not depending immediately on the result of the
call

* You’re bulk-importing

Controlling the flush behavior is only available on the async API. The sync API emulates blocking

87

Command-execution-reliability#message-ordering
Command-execution-reliability#message-ordering
Asynchronous-Connections
Asynchronous-Connections
https://github.com/netty/netty/issues/1759

calls and as soon as you invoke a command, you're no longer able to interact with the connection
until the blocking call ends.

The AutoFlushCommands state is set per connection and therefore affects all threads using the shared
connection. If you want to omit this effect, use dedicated connections. The AutoFlushCommands state
cannot be set on pooled connections by the lettuce connection pooling.

Example 56. Asynchronous Pipelining

StatefulRedisConnection<String, String> connection = client.connect();
RedisAsyncCommands<String, String> commands = connection.async();

// disable auto-flushing
commands.setAutoFlushCommands(false);

// perform a series of independent calls

List<RedisFuture<?>> futures = Lists.newArrayList();

for (int i = 0; i < iterations; i++) {
futures.add(commands.set("key-" + i, "value-" + i));
futures.add(commands.expire("key-" + i, 3600));

// write all commands to the transport layer
commands. flushCommands();

// synchronization example: Wait until all futures complete
boolean result = LettuceFutures.awaitAll(5, TimeUnit.SECONDS,
futures.toArray(new RedisFuture[futures.size()]));

// later
connection.close();

Performance impact

Commands invoked in the default flush-after-write mode perform in an order of about 100Kops/sec
(async/multithreaded execution). Grouping multiple commands in a batch (size depends on your
environment, but batches between 50 and 1000 work nice during performance tests) can increase
the throughput up to a factor of 5x.

Pipelining within the Redis docs: http://redis.io/topics/pipelining

7.9. Connection Pooling

Lettuce connections are designed to be thread-safe so one connection can be shared amongst
multiple threads and Lettuce connections auto-reconnection by default. While connection pooling
is not necessary in most cases it can be helpful in certain use cases. Lettuce provides generic
connection pooling support.

88

http://redis.io/topics/pipelining

7.9.1. Is connection pooling necessary?

Lettuce is thread-safe by design which is sufficient for most cases. All Redis user operations are
executed single-threaded. Using multiple connections does not impact the performance of an
application in a positive way. The use of blocking operations usually goes hand in hand with worker
threads that get their dedicated connection. The use of Redis Transactions is the typical use case for
dynamic connection pooling as the number of threads requiring a dedicated connection tends to be
dynamic. That said, the requirement for dynamic connection pooling is limited. Connection pooling
always comes with a cost of complexity and maintenance.

7.9.2. Execution Models
Lettuce supports two execution models for pooling:

» Synchronous/Blocking via Apache Commons Pool 2

* Asynchronous/Non-Blocking via a Lettuce-specific pool implementation (since version 5.1)

7.9.3. Synchronous Connection Pooling

Using imperative programming models, synchronous connection pooling is the right choice as it
carries out all operations on the thread that is used to execute the code.

Prerequisites

Lettuce requires Apache’s common-pool2 dependency (at least 2.2) to provide connection pooling.
Make sure to include that dependency on your classpath. Otherwise, you won’t be able using
connection pooling.

If using Maven, add the following dependency to your pom. xml:

<dependency>
<groupId>org.apache.commons</groupld>
<artifactId>commons-pool2</artifactId>
<version>2.4.3</version>

</dependency>

Connection pool support

Lettuce provides generic connection pool support. It requires a connection Supplier that is used to
create connections of any supported type (Redis Standalone, Pub/Sub, Sentinel, Master/Replica,
Redis Cluster). ConnectionPoolSupport will create a GenericObjectPool or SoftReferenceObjectPool,
depending on your needs. The pool can allocate either wrapped or direct connections.

* Wrapped instances will return the connection back to the pool when called
StatefulConnection.close().

» Regular connections need to be returned to the pool with GenericObjectPool.returnObject ().

Basic usage

89

https://commons.apache.org/proper/commons-pool/

RedisClient client = RedisClient.create(RedisURI.create(host, port));

GenericObjectPool<StatefulRedisConnection<String, String>> pool =
ConnectionPoolSupport

.createGenericObjectPool(() -> client.connect(), new
GenericObjectPoolConfig());

// executing work
try (StatefulRedisConnection<String, String> connection = pool.borrowObject()) {

RedisCommands<String, String> commands = connection.sync();
commands.multi();

commands.set("key", "value");

commands.set("key2", "value2");

commands.exec();

}

// terminating
pool.close();
client.shutdown();

Cluster usage

RedisClusterClient clusterClient = RedisClusterClient.create(RedisURI.create(host,
port));

GenericObjectPool<StatefulRedisClusterConnection<String, String>> pool =
ConnectionPoolSupport

.createGenericObjectPool(() -> clusterClient.connect(), new
GenericObjectPoolConfig());

// execute work
try (StatefulRedisClusterConnection<String, String> connection = pool.borrowObject())

{

connection.sync().set("key", "value");
connection.sync().blpop(10, "list");
+

// terminating
pool.close();
clusterClient.shutdown();

7.9.4. Asynchronous Connection Pooling

Asynchronous/non-blocking programming models require a non-blocking API to obtain Redis
connections. A blocking connection pool can easily lead to a state that blocks the event loop and
prevents your application from progress in processing.

90

Lettuce comes with an asynchronous, non-blocking pool implementation to be used with Lettuces
asynchronous connection methods. It does not require additional dependencies.

Asynchronous Connection pool support

Lettuce provides asynchronous connection pool support. It requires a connection Supplier that is
used to asynchronously connect to any supported type (Redis Standalone, Pub/Sub, Sentinel,
Master/Replica, Redis Cluster). AsyncConnectionPoolSupport will create a BoundedAsyncPool. The pool
can allocate either wrapped or direct connections.

* Wrapped instances will return the connection back to the pool when called
StatefulConnection.closeAsync().

* Regular connections need to be returned to the pool with AsyncPool.release(l).

Basic usage

RedisClient client = RedisClient.create();

AsyncPool<StatefulRedisConnection<String, String>> pool = AsyncConnectionPoolSupport
.createBoundedObjectPool(

() -> client.connectAsync(StringCodec.UTF8, RedisURI.create(host, port)),
BoundedPoolConfig.create());

// execute work
CompletableFuture<TransactionResult> transactionResult = pool.acquire().thenCompose
(connection -> {

RedisAsyncCommands<String, String> async = connection.async();
async.multi();

async.set("key", "value");

async.set("key2", "value2");

return async.exec().whenComplete((s, throwable) -> pool.release(c));

b

// terminating
pool.closeAsync();

// after pool completion
client.shutdownAsync();

Cluster usage

91

7

Lettuce covers nearly all Redis commands. Redis development is an ongoing process and the Redis
Module system is intended to introduce new commands which are not part of the Redis Core. This
quirement introduces the need to invoke custom commands or use custom outputs. Custom
mmands can be dispatched on the one hand using Lua and the eval() command, on the other
side Lettuce 4.x allows you to trigger own commands. That API is used by Lettuce itself to dispatch
mmands and requires some knowledge of how commands are constructed and dispatched within

re
Cco

CO

RedisClusterClient clusterClient = RedisClusterClient.create(RedisURI.create(host,
port));

AsyncPool<StatefulRedisConnection<String, String>> pool = AsyncConnectionPoolSupport
.createBoundedObjectPool(
() -> clusterClient.connectAsync(StringCodec.UTF8), BoundedPoolConfig.create(

)i

// execute work
CompletableFuture<String> setResult = pool.acquire().thenCompose(connection -> {

RedisAsyncCommands<String, String> async = connection.async();
async.set("key", "value");
return async.async.set("key2", "value2").whenComplete((s, throwable) -> pool

.release(c));

1

// terminating
pool.closeAsync();

// after pool completion
client.shutdownAsync();

.10. Custom commands

Lettuce.

Lettuce provides two levels of command dispatching:

1.

2

according to their nature

. Using the bare connection to influence the command nature and synchronization (advanced)

Example using dispatch() on the synchronous API

92

Using the synchronous, asynchronous or reactive API wrappers which invoke commands

RedisCodec<String, String> codec = StringCodec.UTF8;
RedisCommands<String, String> commands = ...

String response = redis.dispatch(CommandType.SET, new StatusOutput<>(codec),
new CommandArgs<>(codec)
.addKey(key)
.addValue(value));

Example using dispatch() on the asynchronous API

RedisCodec<String, String> codec = StringCodec.UTF8;
RedisAsyncCommands<String, String> commands = ...

RedisFuture<String> response = redis.dispatch(CommandType.SET, new StatusOutput<>
(codec),
new CommandArgs<>(codec)
.addKey(key)
.addValue(value));

Example using dispatch() on the reactive API

RedisCodec<String, String> codec = StringCodec.UTFS8;
RedisReactiveCommands<String, String> commands = ...

Observable<String> response = redis.dispatch(CommandType.SET, new StatusOutput<>(
codec),
new CommandArgs<>(codec)

.addKey (key)
.addValue(value));

Example using a RedisFuture command wrapper

StatefulRedisConnection<String, String> connection = redis.getStatefulConnection();

RedisCommand<String, String, String> command = new Command<>(CommandType.PING,
new StatusOutput<>(new Utf8StringCodec()));

AsyncCommand<String, String, String> async = new AsyncCommand<>(command);
connection.dispatch(async);

// async instanceof CompletableFuture == true

7.10.1. Mechanics of Lettuce commands

Lettuce uses the command pattern to implement to execute commands. Every time a command is
invoked, lettuce creates a command object (Command or types implementing RedisCommand).

93

Commands can carry arguments (CommandArgs) and an output (subclasses of CommandOutput). Both are
optional. The two mandatory properties are the command type (see CommandType or a type
implementing ProtocolKeyword) and a RedisCodec. If you dispatch commands by yourself, do not
reuse command instances to dispatch commands more than once. Commands that were executed
once have the completed flag set and cannot be reused.

Arguments

CommandArgs is a container for command arguments that follow the command keyword (
CommandType). A PING or QUIT command do not require commands whereas the GET or SET commands
require arguments in the form of keys and values.

The PING command

RedisCommand<String, String, String> command = new Command<>(CommandType.PING,
new StatusOutput<>(StringCodec.UTF8));

The SET command

StringCodec codec = StringCodec.UTFS;
RedisCommand<String, String, String> command = new Command<>(CommandType.SET,
new StatusOutput<>(codec), new CommandArgs<>(codec)
.addKey("key")
.addValue("value"));

CommandArgs allow to add one or more:

* key and arrays of keys

 value and arrays of values

» String, long (the Redis integer), double
* byte array

CommandType, CommandKeyword and generic ProtocolKeyword

The sequence of args and keywords is not validated by lettuce beyond the supported data types,
meaning Redis will report errors if the command syntax is not correct.

Outputs

Commands producing an output are required to consume the output. lettuce supports type-safe
conversion of the response into the appropriate result types. The output handlers derive from the
CommandOutput base class. lettuce provides a wide range of output types (see the
com. lambdaworks.redis.output package for details). Command outputs are mostly used to return the
result as the whole object. The response is available as soon as the whole command output is
processed. There are cases, where you might want to stream the response instead of allocating a
significant amount of memory and return the whole response as one. These types are called
streaming outputs. Following implementations ship with lettuce:

94

* KeyStreamingOutput

* KeyValueScanStreamingQOutput
* KeyValueStreamingOutput

* ScoredValueStreamingQutput
* ValueScanStreamingOutput

* ValueStreamingOutput

Those outputs take a streaming channel (see ValueStreamingChannel) and invoke the callback
method (e.g. onValue(V value)) for every data element.

Implementing an own output is, in general, a good idea when you want to support a different data
type, or you want to work with different types than the basic collection, map, String, and primitive
types. You might get an impression of the custom types idea by taking a look on
GeoWithinListOutput, which takes a bunch of strings and nested lists to construct a list of GeoWithin
instances.

Please note that using an output that does not fit the command output can jam the response
processing and lead to not usable connections. Use either ArrayOutput or NestedMultiOutput when in
doubt, so you receive a list of objects (nested lists).

Output for the PING command

Command<String, String, String> command = new Command<>(CommandType.PING,
new StatusOutput<>(StringCodec.UTF8));

Output for the HGETALL command

StringCodec codec = StringCodec.UTF8;
Command<String, String, Map<String, String>> command = new Command<>(CommandType
.HGETALL,

new MapOutput<>(codec),

new CommandArgs<>(codec).addKey(key));

Output for the HKEYS command

StringCodec codec = StringCodec.UTFS;

Command<String, String, List<String>> command = new Command<>(CommandType.HKEYS,
new KeyListOutput<>(codec),
new CommandArgs<>(codec).addKey(key));

7.10.2. Synchronous, asynchronous and reactive

Great, that you made it up to here. You might want to know now, how to synchronize the command
completion, work with Futures or how about the reactive API. The simple way is using the

95

dispatch(0) method of the according wrapper. If this is not sufficient, then continue on reading.

The dispatch() method on a stateful Redis connection is not opinionated at all how you are using
lettuce, whether it is synchronous or reactive. The only thing this method does is dispatching the
command. The response handler handles decoding the command and completing the command
once it’s done. The asynchronous command processing is the only operating mode of lettuce.

The RedisCommand interface provides methods to complete(), cancel() and completeExceptionally()
the command. The complete() methods are called by the response handler as soon as the command
is completed. Redis commands can be wrapped and augmented by that way. Wrapping is used
when using transactions (MULTI) or Redis Cluster.

You are free to implement your command type or use one of the provided commands:

* Command (default implementation)
* AsyncCommand (the CompleteableFuture wrapper for RedisCommand)
* CommandWrapper (generic wrapper)

* TransactionalCommand (wraps RedisCommands when MULTI is active)

Fire & Forget

Fire&Forget is the simple-most way to dispatch commands. You just trigger it and then you do not
care what happens with it, whether it completes or not, and you don’t have access to the command
output:

StatefulRedisConnection<String, String> connection = redis.getStatefulConnection();

RedisCommand<String, String, String> command = new Command<>(CommandType.PING,
new StatusOutput<>(StringCodec.UTF8));

connection.dispatch(command);

Asynchronous

The asynchronous API works in general with the AsyncCommand wrapper that extends
CompleteableFuture. AsyncCommand can be synchronized by await() or get() which corresponds with
the asynchronous pull style. By using the methods from the CompletionStage interface (such as
handle() or thenAccept()) the response handler will trigger the functions ("listeners") on command
completion. Lear more about asynchronous usage in the Asynchronous API topic.

96

StatefulRedisConnection<String, String> connection = redis.getStatefulConnection();

RedisCommand<String, String, String> command = new Command<>(CommandType.PING,
new StatusOutput<>(StringCodec.UTF8));

AsyncCommand<String, String, String> async = new AsyncCommand<>(command);
connection.dispatch(async);

// async instanceof CompletableFuture == true

Synchronous

The synchronous API of lettuce uses future synchronization to provide a synchronous view.

Reactive

Reactive commands are dispatched at the moment of subscription (see Reactive API for more
details on reactive APIs). In the context of Lettuce this means, you need to start before calling the
dispatch() method. The reactive API uses internally an ObservableCommand, but that is internal stuff.
If you want to dispatch commands the reactive way, you’ll need to wrap commands (or better:
command supplier to be able to retry commands) with the ReactiveCommandDispatcher. The
dispatcher implements the OnSubscribe API to create an Observable<T>, handles command
dispatching at the time of subscription and can dissolve collection types to particular elements. An
instance of ReactiveCommandDispatcher allows creating multiple Observables as long as you use a
Supplier<RedisCommand>. Commands that were executed once have the completed flag set and
cannot be reused.

StatefulRedisConnection<String, String> connection = redis.getStatefulConnection();

RedisCommand<String, String, String> command = new Command<>(CommandType.PING,
new StatusOutput<>(StringCodec.UTF8));
ReactiveCommandDispatcher<String, String, String> dispatcher = new
ReactiveCommandDispatcher<>(command,
connection, false);

Observable<String> observable = Observable.create(dispatcher);
String result = observable.toBlocking().first();

result == "PONG"

7.11. Command execution reliability

Lettuce is a thread-safe and scalable Redis client that allows multiple independent connections to
Redis.

97

7.11.1. General
lettuce provides two levels of consistency; these are the rules for Redis command sends:
Depending on the chosen consistency level:

* at-most-once execution, i. e. no guaranteed execution

+ at-least-once execution, i. e. guaranteed execution (with some exceptions)
Always:

* command ordering in the order of invocations

7.11.2. What does at-most-once mean?

When it comes to describing the semantics of an execution mechanism, there are three basic
categories:

e at-most-once execution means that for each command handed to the mechanism, that
command is execution zero or one time; in more casual terms it means that commands may be
lost.

 at-least-once execution means that for each command handed to the mechanism potentially
multiple attempts are made at execution it, such that at least one succeeds; again, in more
casual terms this means that commands may be duplicated but not lost.

» exactly-once execution means that for each command handed to the mechanism exactly one

execution is made; the command can neither be lost nor duplicated.

The first one is the cheapest - the highest performance, least implementation overhead - because it
can be done without tracking whether the command was sent or got lost within the transport
mechanism. The second one requires retries to counter transport losses, which means keeping the
state at the sending end and having an acknowledgment mechanism at the receiving end. The third
is most expensive—and has consequently worst performance—because also to the second it
requires a state to be kept at the receiving end to filter out duplicate executions.

7.11.3. Why No Guaranteed Delivery?
At the core of the problem lies the question what exactly this guarantee shall mean:

The command is sent out on the network?
. The command is received by the other host?

. The command is processed by Redis?

1.

2

3

4. The command response is sent by the other host?

5. The command response is received by the network?
6

. The command response is processed successfully?
Each one of these have different challenges and costs, and it is obvious that there are conditions

under which any command sending library would be unable to comply. Think for example about

98

#exceptions-to-at-least-once

how a network partition would affect point three, or even what it would mean to decide upon the
“successfully” part of point six.

The only meaningful way for a client to know whether an interaction was successful is by receiving
a business-level acknowledgment command, which is not something lettuce could make up on its
own.

lettuce allows two levels of consistency; each one has its costs and benefits, and therefore it does
not try to lie and emulate a leaky abstraction.

7.11.4. Message Ordering
The rule more specifically is that commands sent are not be executed out-of-order.
The following illustrates the guarantee:

e Thread T1 sends commands C1, 2, C3 to Redis

e Thread T2 sends commands (4, C5, C6 to Redis
This means that:

e If C1is executed, it must be executed before (2 and (3.

o If C2 is executed, it must be executed before (3.

If (4 is executed, it must be executed before (5 and C6.

If C5 is executed, it must be executed before (6.

¢ Redis executes commands from T1 interleaved with commands from T2.

If there is no guaranteed delivery, any of the commands may be dropped, i.e. not arrive at Redis.

7.11.5. Failures and at-least-once execution

lettuce’s at-least-once execution is scoped to the lifecycle of a logical connection. Redis commands
are not persisted to be executed after a JVM or client restart. All Redis command state is held in
memory. A retry mechanism re-executes commands that are not successfully completed if a
network failure occurs. In more casual terms, when Redis is available again, the retry mechanism
fires all queued commands. Commands that are issued as long as the failure persists are buffered.

at-least-once execution ensures a higher consistency level than at-most-once but comes with some
caveats:

¢« Commands can be executed more than once

* Higher usage of resources since commands are buffered and sent again after reconnect

Exceptions to at-least-once

lettuce does not loose commands while sending them. A command execution can, however, fail for
the same reasons as a normal method call can on the JVM:

e StackOverflowError

99

* QutOfMemoryError

» other Errors
Also, executions can fail in specific ways:

* The command runs into a timeout

* The command cannot be encoded

e The command cannot be decoded, because:

* The output is not compatible with the command output

* Exceptions occur while command decoding/processing. This may happen a StreamingChannel
results in an error, or a consumer of Pub/Sub events fails while listener notification.

While the first is clearly a matter of configuration, the second deserves some thought: The
command execution does not get feedback if there was a timeout. This is in general not
distinguishable from a lost message. By using the Sync API, commands that exceeded their timeout
are canceled. This behavior cannot be changed. When using the Async API, users can decide, how to
proceed with the command, whether the command should be canceled.

Commands which run into Exceptions while encoding or decoding reach a non-recoverable state.
Commands that cannot be encoded are not executed but get canceled. Commands that cannot be
decoded were already executed; only the result is not available. These errors are caused mostly due
to a wrong implementation. The result of a command, which cannot be decoded is that the
command gets canceled, and the causing Exception is available in the result. The command is
cleared from the response queue, and the connection stays useable.

In general, when Errors occur while operating on a connection, you should close the connection
and use a new one. Connections, that experienced such severe failures get into a unrecoverable
state, and no further response processing is possible.

Executing commands more than once
In terms of consistency, Redis commands can be grouped into two categories:

* Idempotent commands

* Non-idempotent commands

Idempotent commands are commands that lead to the same state if they are executed more than
once. Read commands are a good example for idempotency since they do not change the state of
data. Another set of idempotent commands are commands that write a whole data structure/entry
at once such as SET, DEL or CLIENT SETNAME. Those commands change the data to the desired state.
Subsequent executions of the same command leave the data in the same state.

Non-idempotent commands change the state with every execution. This means, if you execute a
command twice, each resulting state is different in comparison to the previous. Examples for non-
idempotent Redis commands are such as LPUSH, PUBLISH or INCR.

Note: When using master-replica replication, different rules apply to at-least-once consistency.
Replication between Redis nodes works asynchronously. A command can be processed successfully

100

from lettuce’s client perspective, but the result is not necessarily replicated to the replica yet. If a
failover occurs at that moment, a replica takes over, and the not yet replicated data is lost.
Replication behavior is Redis-specific. Further documentation about failover and consistency from
Redis perspective is available within the Redis docs: http://redis.io/topics/replication

7.11.6. Switching between at-least-once and at-most-once operations

lettuce’s consistency levels are bound to retries on reconnects and the connection state. By default,
lettuce operates in the at-least-once mode. Auto-reconnect is enabled and as soon as the connection
is re-established, queued commands are re-sent for execution. While a connection failure persists,
issued commands are buffered.

To change into at-most-once consistency level, disable auto-reconnect mode. Connections cannot be
longer reconnected and thus no retries are issued. Not successfully commands are canceled. New
commands are rejected.

7.11.7. Clustered operations

lettuce sticks in clustered operations to the same rules as for standalone operations but with one
exception:

Command execution on master nodes, which is rejected by a MOVED response are tried to re-execute
with the appropriate connection. MOVED errors occur on master nodes when a slot’s responsibility is
moved from one cluster node to another node. Afterwards at-least-once and at-most-once rules

apply.
When the cluster topology changes, generally spoken, the cluster slots or master/replica state is
reconfigured, following rules apply:
* at-most-once If the connection is disconnected, queued commands are canceled and buffered
commands, which were not sent, are executed by using the new cluster view

* at-least-once If the connection is disconnected, queued and buffered commands, which were
not sent, are executed by using the new cluster view

* If the connection is not disconnected, queued commands are finished and buffered commands,
which were not sent, are executed by using the new cluster view

101

http://redis.io/topics/replication

Chapter 8. Integration and Extension

8.1. Codecs

Codecs are a pluggable mechanism for transcoding keys and values between your application and
Redis. The default codec supports UTF-8 encoded String keys and values.

Each connection may have its codec passed to the extended RedisClient.connect methods:

StatefulRedisConnection<K, V> connect(RedisCodec<K, V> codec)
StatefulRedisPubSubConnection<K, V> connectPubSub(RedisCodec<K, V> codec)

lettuce ships with predefined codecs:

* io.lettuce.core.codec.ByteArrayCodec - use byte[] for keys and values

* io.lettuce.core.codec.StringCodec - use Strings for keys and values. Using the default charset or
a specified Charset with improved support for US_ASCII and UTF-8.

* jo.lettuce.core.codec.CipherCodec - used for transparent encryption of values.
* io0.lettuce.core.codec.CompressionCodec - apply GZIP or DEFLATE compression to values.

Publish/Subscribe connections use channel names and patterns for keys; messages are treated as
values.

Keys and values can be encoded independently from each other which means the key can be a
java.lang.String while the value is a byte[]. Many other constellations are possible like:

* Representing your data as JSON if your data is mapped to a particular Java type. Different types
are hard to map since the codec applies to all operations.

» Serialize your data using the Java Serializer (ObjectInputStream/ObjectOutputStream). Allows
type-safe conversions but is less interoperable with other languages

Serializing your data using Kryo for improved type-safe serialization.

* Any specialized codecs like the BitStringCodec (see below)

8.1.1. Why ByteBuffer instead of byte[]

The RedisCodec interface accepts and returns ByteBuffers for data interchange. A ByteBuffer is not
opinionated about the source of the underlying bytes. The byte[] interface of lettuce 3.x required
the user to provide an array with the exact data for interchange. So if you have an array where you
want to use only a subset, you’re required to create a new instance of a byte array and copy the
data. The same applies if you have a different byte source (e.g. netty’s ByteBuf or an NIO ByteBuffer).
The ByteBuffers for decoding are pointers to the underlying data. ByteBuffers for encoding data can
be either pure pointers or allocated memory. lettuce does not free any memory (such as pooled
buffers).

102

https://github.com/EsotericSoftware/kryo

8.1.2. Diversity in Codecs

As in every other segment of technology, there is no one-fits-it-all solution when it comes to Codecs.
Redis data structures provide a variety of The key and value limitation of codecs is intentionally
and a balance amongst convenience and simplicity. The Redis API allows much more variance in
encoding and decoding particular data elements. A good example is Redis hashes. A hash is
identified by its key but stores another key/value pairs. The keys of the key-value pairs could be
encoded using a different approach than the key of the hash. Another different approach might be
to use different encodings between lists and sets. Using a base codec (such as UTF-8 or byte array)
and performing an own conversion on top of the base codec is often the better idea.

8.1.3. Multi-Threading

A Kkey point in Codecs is that Codecs are shared resources and can be used by multiple threads. Your
Codec needs to be thread-safe (by shared-nothing, pooling or synchronization). Every logical lettuce
connection uses its codec instance. Codec instances are shared as soon as multiple threads are
issuing commands or if you use Redis Cluster.

8.1.4. Compression

Compression can be a good idea when storing larger chunks of data within Redis. Any textual data
structures (such as JSON or XML) are suited for compression. Compression is handled at Codec-level
which means you do not have to change your application to apply compression. The
CompressionCodec provides basic and transparent compression for values using either GZIP or
Deflate compression:

Example 57. Compression Codec usage

StatefulRedisConnection<String, Object> connection = client.connect(
CompressionCodec.valueCompressor(new SerializedObjectCodec(),
CompressionCodec.CompressionType.GZIP)).sync();

StatefulRedisConnection<String, String> connection = client.connect(

CompressionCodec.valueCompressor(StringCodec.UTF8,
CompressionCodec.CompressionType.DEFLATE)).sync();

Compression can be used with any codec, the compressor just wraps the inner RedisCodec and
compresses/decompresses the data that is interchanged. You can build your own compressor the
same way as you can provide own codecs.

8.1.5. Examples

103

Example 58. BitString codec

public class BitStringCodec extends StringCodec {
@0verride
public String decodeValue(ByteBuffer bytes) {
StringBuilder bits = new StringBuilder(bytes.remaining() * 8);
while (bytes.remaining() > 0) {
byte b = bytes.get();
for (int i = 0; 1 < 8; i++) {
bits.append(Integer.valueOf(b >>> i & 1));
}

}
return bits.toString();

}

StatefulRedisConnection<String, String> connection = client.connect(new
BitStringCodec());
RedisCommands<String, String> redis = connection.sync();

redis.setbit(key, 0, 1);
redis.setbit(key, 1, 1);
redis.setbit(key, 2, 0);
redis.setbit(key, 3, 0);
redis.setbit(key, 4, 0);
redis.setbit(key, 5, 1);

redis.get(key) == "00100011"

104

Example 59. DK Serializer

public class SerializedObjectCodec implements RedisCodec<String, Object> {
private Charset charset = Charset.forName("UTF-8");

@0verride
public String decodeKey(ByteBuffer bytes) {
return charset.decode(bytes).toString();

}
@0verride
public Object decodeValue(ByteBuffer bytes) {
try {
byte[] array = new byte[bytes.remaining()];
bytes.get(array);
ObjectInputStream is = new ObjectInputStream(new ByteArrayInputStream
(array));
return is.readObject();
} catch (Exception e) {
return null;
}
}
@0verride

public ByteBuffer encodeKey(String key) {
return charset.encode(key);

}
@0verride
public ByteBuffer encodeValue(Object value) {
try {
ByteArrayOutputStream bytes = new ByteArrayOutputStream();
ObjectOutputStream os = new ObjectOutputStream(bytes);
os.writeObject(value);
return ByteBuffer.wrap(bytes.toByteArray());
} catch (IOException e) {
return null;
}
}

8.2. CDI Support

CDI support for Lettuce is available for RedisClient and RedisClusterClient. You need to provide a
RedisURI in order to get lettuce injected.

105

8.2.1. RedisURI producer

Implement a simple producer (either field producer or producer method) of RedisURI:

public RedisURI redisURI() {
return RedisURI.Builder.redis("localhost").build();

}

lettuce also supports qualified RedisURI's:

public RedisURI redisURI() {
return RedisURI.Builder.redis("localhost").build();
ks

8.2.2. Injection

After declaring your RedisURI's you can start using lettuce in your classes:

106

public class InjectedClient {
private RedisClient redisClient;

private RedisClusterClient redisClusterClient;

private RedisClient redisClient;

private RedisConnection<String, String> connection;

public void postConstruct() {
connection = redisClient.connect();

}

public void pingRedis() {
connection.ping();

}

public void preDestroy() {
if (connection != null) {
connection.close();

}

8.2.3. Activating Lettuce’s CDI extension

By default, you just drop lettuce on your classpath and declare at least one RedisURI bean. That’s all.

The CDI extension registers one bean pair (RedisClient and RedisClusterClient) per discovered
RedisURI. This means, if you do not declare any RedisURI producers, the CDI extension won’t be
activated at all. This way you can use lettuce in CDI-capable containers without even activating the
CDI extension.

All produced beans (RedisClient and RedisClusterClient) remain active as long as your application
is running since the beans are @ApplicationScoped.

8.3. Spring Support

Use Lettuce with Spring to manage the RedisClient and the RedisClusterClient. You need to specify
a RedisURI or a URI string in order to create the client.

You can integrate with Lettuce either by using Spring Data Redis (recommended) or standalone by

107

https://github.com/spring-projects/spring-data-redis/

providing Java/XML configuration.

8.3.1. Spring Data Redis

Using Lettuce through Spring Data Redis provides familiar Spring abstractions for Redis usage. It
integrates well with other Spring components such as Spring Session or Spring Boot. See Spring
Data Redis reference documentation for lettuce usage.

8.3.2. Redis Client

Lettuce Standalone/Sentinel/Pub/Sub and Master/Replica can be used through RedisClient. You can
provide bean definitions to manage Lettuce resources inside a Spring context. Bean management
can take care of resource allocation and clean up through Spring’s bean lifecycle management.
Using managed beans gives you the possibility to access lettuce’s RedisClient/connections from
various places inside your code. Your code can also benefit from dependency injection.

Java Configuration

Configuring lettuce using Spring’s Java Configuration with @Bean definitions requires you to provide
bean definitions. Notice the specification of destroyMethod to clean up resources once the
application context is shut down.

public class LettuceConfig {

(destroyMethod = "shutdown")
ClientResources clientResources() {
return DefaultClientResources.create();

(destroyMethod = "shutdown")
RedisClient redisClient(ClientResources clientResources) {

return RedisClient.create(clientResources, RedisURI.create(TestSettings.host(
), TestSettings.port()));

}

(destroyMethod = "close")
StatefulRedisConnection<String, String> connection(RedisClient redisClient) {
return redisClient.connect();

}

XML Configuration

Use RedisClientFactoryBean to create a managed instance of RedisClient using XML-based
configuration.

108

http://docs.spring.io/spring-data/redis/docs/current/reference/html/
http://docs.spring.io/spring-data/redis/docs/current/reference/html/#redis:connectors:lettuce

<bean id="redisClient" class="1io.lettuce.core.support.RedisClientFactoryBean">
<property name="password" value="mypassword"/>
<!-- Redis URI Format: redis://host[:port]/database -->
<!-- Redis URI: Specify Database as Path -->
<property name="uri" value="redis://localhost/12"/>

<l-- Redis Sentinel URI Format: redis-
sentinel://host[:port][,host[:port][,host[:port]]/database#fmasterId -->

<!-- Redis Sentinel URI: You can specify multiple sentinels. Specify Database as
Path, Master Id as Fragment. -->

<property name="uri" value="redis-
sentinel://localhost,localhost2,localhost3/1#myMaster"/>
</bean>

8.3.3. Redis Cluster Client

Lettuce Redis Cluster support can be used through RedisClusterClient. You can provide bean
definitions to manage Lettuce resources inside a Spring context. Bean management can take care of
resource allocation and clean up through Spring’s bean lifecycle management. Using managed
beans gives you the possibility to access Lettuce’s RedisClusterClient/connections from various
places inside your code. Your code can also benefit from dependency injection.

Java Configuration

Configuring Lettuce using Spring’s Java Configuration with @Bean definitions requires you to
provide bean definitions. Notice the specification of destroyMethod to clean up resources once the
application context is shut down.

109

@Configuration
public class LettuceConfig {

@Bean(destroyMethod = "shutdown")
ClientResources clientResources() {
return DefaultClientResources.create();

}

@Bean(destroyMethod = "shutdown")
RedisClusterClient redisClusterClient(ClientResources clientResources) {

RedisURI redisURI = RedisURI.create(TestSettings.host(), 7379);

return RedisClusterClient.create(clientResources, redisURI);

}

@Bean(destroyMethod = "close")
StatefulRedisClusterConnection<String, String> clusterConnection
(RedisClusterClient clusterClient) {
return clusterClient.connect();

}

XML Configuration

Use RedisClusterClientFactoryBean to create a managed instance of RedisClusterClient using XML-
based configuration.

<bean id="redisClient" class="1io.lettuce.core.support.RedisClusterClientFactoryBean">
<property name="password" value="mypassword"/>
<!-- Redis URI Format: redis://host[:port]/database -->
<!-- Redis URI: Specify Database as Path -->
<property name="uri" value="redis://localhost/12"/>
</bean>

110

	Lettuce Reference Guide
	Table of Contents
	Chapter 1. Overview
	1.1. Knowing Redis
	1.2. Project Reactor
	1.3. Non-blocking API for Redis
	1.4. Requirements
	1.5. Additional Help Resources
	1.5.1. Support
	1.5.2. Following Development
	1.5.3. Project Metadata

	1.6. Where to go from here

	Chapter 2. New & Noteworthy
	2.1. What’s new in Lettuce 5.2
	2.2. What’s new in Lettuce 5.1
	2.3. What’s new in Lettuce 5.0

	Chapter 3. Getting Started
	3.1. 1. Get it
	3.1.1. For Maven users:
	3.1.2. For Ivy users:
	3.1.3. For Gradle users:
	3.1.4. Plain Java

	3.2. 2. Start coding

	Chapter 4. Connecting Redis
	4.1. URI syntax
	4.2. Basic Usage
	4.2.1. RedisURI
	4.2.2. Exceptions
	4.2.3. Examples

	4.3. Asynchronous API
	4.3.1. Motivation
	4.3.2. Creating futures using lettuce
	4.3.3. Consuming futures
	4.3.4. Synchronizing futures
	4.3.5. Error handling
	4.3.6. Examples

	4.4. Reactive API
	4.4.1. Motivation
	4.4.2. Understanding Reactive Streams
	4.4.3. Understanding Publishers
	4.4.4. A word on the lettuce Reactive API
	4.4.5. Consuming Publisher<T>
	4.4.6. From push to pull
	4.4.7. Creating Flux and Mono using lettuce
	4.4.8. Hot and Cold Publishers
	4.4.9. Transforming publishers
	4.4.10. Absent values
	4.4.11. Filtering items
	4.4.12. Error handling
	4.4.13. Schedulers and threads
	4.4.14. Redis Transactions

	4.5. Publish/Subscribe
	4.5.1. Subscribing
	4.5.2. Reactive API
	4.5.3. Redis Cluster

	4.6. Transactions/Multi
	4.6.1. Transactions using the asynchronous API
	4.6.2. Transactions using the reactive API
	4.6.3. Transactions on clustered connections
	4.6.4. Examples

	Chapter 5. High-Availability and Sharding
	5.1. Master/Replica
	5.1.1. Redis Sentinel
	5.1.2. Standalone Master/Replica
	5.1.3. Static Master/Replica with predefined node addresses
	5.1.4. Topology discovery
	5.1.5. Topology Updates

	5.2. Redis Sentinel
	5.2.1. Direct connection Redis Sentinel nodes
	5.2.2. Redis discovery using Redis Sentinel
	5.2.3. Examples

	5.3. Redis Cluster
	5.3.1. Command routing
	5.3.2. Cross-slot command execution and cluster-wide execution for selected commands
	5.3.3. Execution of commands on one or multiple cluster nodes
	5.3.4. Refreshing the cluster topology view
	5.3.5. Connection Count for a Redis Cluster Connection Object
	5.3.6. Client-options

	5.4. ReadFrom Settings
	5.4.1. Redis Cluster
	5.4.2. Master/Replica connections
	5.4.3. Use Cases for non-master reads
	5.4.4. Read from settings

	Chapter 6. Working with dynamic Redis Command Interfaces
	6.1. Introduction
	6.2. Command methods
	6.3. Defining command methods
	6.3.1. Command naming
	6.3.2. CamelCase in method names
	6.3.3. @Command annotation
	6.3.4. Parameters
	6.3.5. Codecs
	6.3.6. Response types

	6.4. Execution models
	6.4.1. Synchronous (Blocking) Execution
	6.4.2. Asynchronous (Future) Execution
	6.4.3. Reactive Execution
	6.4.4. Batch Execution

	Chapter 7. Advanced usage
	7.1. Configuring Client resources
	7.1.1. Creating Client resources
	7.1.2. Using and reusing ClientResources
	7.1.3. Configuration settings
	7.1.4. Advanced settings

	7.2. Client Options
	7.2.1. Cluster-specific options
	7.2.2. Request queue size and cluster

	7.3. SSL Connections
	7.3.1. Limitations
	7.3.2. Connection Procedure and Reconnect
	7.3.3. Certificate Chains/Root Certificate/Self-Signed Certificates
	7.3.4. Host/Peer Verification
	7.3.5. StartTLS

	7.4. Native Transports
	7.4.1. Limitations

	7.5. Unix Domain Sockets
	7.6. Streaming API
	7.6.1. Examples

	7.7. Events
	7.7.1. Before 3.4/4.1
	7.7.2. Since 3.4/4.1

	7.8. Pipelining and command flushing
	7.8.1. Command flushing

	7.9. Connection Pooling
	7.9.1. Is connection pooling necessary?
	7.9.2. Execution Models
	7.9.3. Synchronous Connection Pooling
	7.9.4. Asynchronous Connection Pooling

	7.10. Custom commands
	7.10.1. Mechanics of Lettuce commands
	7.10.2. Synchronous, asynchronous and reactive

	7.11. Command execution reliability
	7.11.1. General
	7.11.2. What does at-most-once mean?
	7.11.3. Why No Guaranteed Delivery?
	7.11.4. Message Ordering
	7.11.5. Failures and at-least-once execution
	7.11.6. Switching between at-least-once and at-most-once operations
	7.11.7. Clustered operations

	Chapter 8. Integration and Extension
	8.1. Codecs
	8.1.1. Why ByteBuffer instead of byte[]
	8.1.2. Diversity in Codecs
	8.1.3. Multi-Threading
	8.1.4. Compression
	8.1.5. Examples

	8.2. CDI Support
	8.2.1. RedisURI producer
	8.2.2. Injection
	8.2.3. Activating Lettuce’s CDI extension

	8.3. Spring Support
	8.3.1. Spring Data Redis
	8.3.2. Redis Client
	8.3.3. Redis Cluster Client

